1 COMPOUND SODIUM LACTATE (HARTMANNS), (solution for infusion)

2 QUALITATIVE AND QUANTITATIVE COMPOSITION

<table>
<thead>
<tr>
<th>Name of the active components</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium Chloride</td>
<td>6g</td>
</tr>
<tr>
<td>Sodium Lactate</td>
<td>3.22g</td>
</tr>
<tr>
<td>Potassium Chloride</td>
<td>0.4g</td>
</tr>
<tr>
<td>Calcium Chloride Dihydrate</td>
<td>0.27g</td>
</tr>
</tbody>
</table>

The only excipient in these solutions is water for injection; no antimicrobial agent or buffer is included.

3 PHARMACEUTICAL FORM

Solution for infusion.

Appearance
Sodium chloride and potassium chloride occur as a colourless or white crystals and are freely soluble in water.

Calcium chloride is a white, crystalline powder, hygroscopic and freely soluble in water.

Sodium lactate is available as a sodium lactate solution having physical properties as a clear, colourless, slightly syrupy liquid, miscible with water.

Compound Sodium Lactate (Hartmanns) is a sterile, non-pyrogenic solution.

Compound Sodium Lactate (Hartmanns) is an isotonic intravenous solution with pH of 5.0 – 7.0.

4 CLINICAL PARTICULARS

4.1 Therapeutic indications
Compound Sodium Lactate (Hartmanns) infusion solution is indicated as a source of water and electrolytes. It is also used in patients as a source of bicarbonate in the treatment of mild to moderate metabolic acidosis associated with dehydration or associated with potassium deficiency. This solution is indicated as a method of intravenous drug delivery, if the drugs are compatible with the solution.

4.2 Dose and method of administration
To be used as directed by the physician. The dosage of Compound Sodium Lactate (Hartmanns) infusion solution is dependent upon the age, weight, concomitant treatments and clinical condition of the patient, as well as laboratory determinations and response. Parenteral drug products should be inspected visually for particulate matter and discoloration prior to administration whenever solution and container permit, as only sterile and nonpyrogenic equipment must be used for intravenous administration. As with all parenteral solutions, compatibility of the additives with the solution must be assessed before addition, by checking for a possible colour change and/or the appearance of precipitates, insoluble complexes or crystals.

NEW ZEALAND DATA SHEET
Before adding a substance or medication, verify that it is soluble and/or stable in water and that the pH range of **Compound Sodium Lactate (Hartmanns)** infusion solution is appropriate. Complete information is not available. Those additives known to be incompatible should not be used. Consult with a pharmacist, if available. If in the informed judgment of the physician, it is deemed advisable to introduce additives, use aseptic technique. Mix thoroughly when additives have been introduced. Refer to instructions below. Do not store solutions containing additives. Do not reconnect any partially used containers.

Directions for use of Viaflex plastic container
Do not use plastic containers in series connections. Such use could result in embolism due to residual air being drawn from the primary container before administration of the fluid from the secondary container is completed. Vented intravenous administration sets with the vent open, or pressurising intravenous solutions contained in flexible plastic containers to increase flow rate can also result in air embolism if the residual air in the container is not fully evacuated prior to administration.

To open
Tear over wrap down side at slit and remove solution container. Some opacity of the plastic due to moisture absorption during the sterilisation process may be observed. This is normal and does not affect the solution quality or safety. The opacity will diminish gradually. Check for minute leaks by squeezing inner bag firmly. If leaks are found, discard solution as sterility may be impaired. If supplemental medication is desired, follow directions below.

Preparation for Administration
1. Suspend container from eyelet support.
2. Remove plastic protector from outlet port at the bottom of container.
3. Attach administration set.

To Add Medication:

Additives may be incompatible.

To add medication before solution administration:
Prepare medication site. Using syringe with 19 to 22-gauge needle, puncture resealable medication port and inject. Mix solution and medication thoroughly. For high-density medications, such as potassium chloride, squeeze ports while ports are upright and mix thoroughly.

To add medication during solution administration:
Close clamp on the set. Prepare medication site. Using syringe with 19 to 22-gauge needle, puncture resealable medication port and inject. Remove container from IV pole and/or turn to upright position. Evaluate both ports by squeezing them while container is in the upright position. Mix solution and medication thoroughly. Return container to in use position and continue administration.

4.3 Contraindications
Compound Sodium Lactate (Hartmanns) infusion solution is contraindicated in patients with a known hypersensitivity to sodium lactate; congestive heart failure or severe impairment of renal function; clinical states in which the administration of sodium and chloride is detrimental; concomitant administration of ceftriaxone in neonates (≤28 days of age) even if separate infusion lines are used; concomitant administration of ceftriaxone in infants (>28 days of age), children and adults through same infusion line (e.g. via Y-connector).
4.4 Special warnings and precautions for use

Compound Sodium Lactate (Hartmanns) infusion solution is not for use in the treatment of lactic acidosis, severe metabolic acidosis or treatment of severe potassium deficiency. Although the solutions have potassium concentrations similar to that of plasma, it is insufficient to produce a useful effect in severe potassium deficiency.

The safety of the Viaflex plastic container used in Compound Sodium Lactate (Hartmanns) infusion solution has been confirmed in tests in animals according to the USP biological tests for plastic containers, as well as by tissue culture toxicity studies. Solutions in contact with the plastic container can leach out certain of its chemical components in very small amounts within the expiration period, e.g., di-2-ethylhexyl phthalate (DEHP), up to 5 parts per million. Nevertheless, care should be exercised regarding possible incompatibility outcomes resulted either from the interaction between the plastic container or active ingredients and the added therapeutic substances. (See Section 4.2).

The introduction of additives to any solution, regardless of type of container, requires special attention to assure that no incompatibilities result. While some incompatibilities are readily observed, one must be aware that subtle physical, chemical and pharmacological incompatibilities can occur.

Concomitant administration with ceftriaxone in newborns (≤28 days of age) is not recommended through the same infusion line (see Section 4.3) due to the risk of fatal ceftriaxone-calcium salt precipitation.

In patients older than 28 days (including adults), ceftriaxone must not be administered simultaneously with intravenous calcium-containing solutions, through the same infusion line. If the same infusion line is used for sequential administration, the line must be thoroughly flushed between infusions with a compatible fluid.

The medical literature and other available sources of information should be reviewed for a thorough understanding of possible incompatibilities.

Do not administer Compound Sodium Lactate (Hartmanns) infusion solution unless it is clear and the seal is intact.

In a dilute condition, osmolarity is approximately equivalent to osmolality. Compound Sodium Lactate (Hartmanns) infusion solution is isotonic (274mOsmol/L). The addition of potassium chloride (0.18%, 48mOsmol/L) to the Compound Sodium Lactate (Hartmanns) solution does not result in a hypertonic solution (324mOsmol/L). It is important to bear in mind that an administration of substantially hypertonic solution may lead to a wide variety of complications, such as crenation (shrinkage) of red blood cells and general cellular dehydration.

In patients with diminished renal function, administration of Compound Sodium Lactate (Hartmanns) infusion may result in sodium, calcium and/or potassium retention. If a patient receives prolonged therapy, or the rate of administration warrants review, clinical evaluation and laboratory monitoring for changes in fluid balance, electrolyte concentration and acid-base balance should be conducted. Use with particular caution in patients with hyperkalaemia or risk of such (e.g. potassium excretion impairment, adrenocortical insufficiency, acute dehydration, severe renal impairment or extensive tissue injury or burns) and patients with cardiac disease, as administration of IV potassium can rapidly result in severe hyperkalaemia without symptoms, which may lead to fatal adverse reactions. Consideration should be given to withholding Compound Sodium Lactate (Hartmanns) infusion altogether in hypervolaemic or overhydrated patients, including those with
severe renal impairment, primary or secondary hyperaldosteronism or preeclampsia, due to the risk of potassium and/or sodium retention, fluid overload and oedema.

The intravenous administration of Compound Sodium Lactate (Hartmanns) infusion solution can cause fluid and/or solute overloading resulting in dilution of the serum electrolyte concentrations, over-hydration, congested states, including pulmonary congestion and oedema, clinically relevant electrolyte disturbance and acid-base imbalance. The risk of dilution states is inversely proportional to the electrolyte concentrations of the injections. The risk of solute overload causing congested states with peripheral and pulmonary oedema is directly proportional to the electrolyte concentrations of the injections.

The effect of the sodium lactate component in the Hartmann’s solution on patients with metabolic or respiratory alkalosis should be monitored closely. Compound Sodium Lactate (Hartmanns) infusion should be administered with extreme caution, if at all, in patients with increased lactate levels or impaired lactate utilisation such as cardiac disease, shock and severe hepatic insufficiency as alkalinisation may not be achieved and hyperlactaemia can develop (See also Paediatric use).

Lactate is a substrate for gluconeogenesis so consideration should be given to the use of Compound Sodium Lactate (Hartmanns) infusion in Type 2 diabetics.

Patients with calcium renal calculi or a history of such, and patients with hypercalcaemia, or conditions predisposing to hypercalcaemia such as severe renal impairment and granulomatus diseases associated with increased calcitriol synthesis including sarcoidosis, should use Compound Sodium Lactate (Hartmanns) infusion solution with caution.

Compound Sodium Lactate (Hartmanns) infusion solution should be used with caution in patients receiving corticosteroids or corticotrophin, i.e., potential sodium retention. Similarly with a patient receiving potassium supplement preparation as it may result in hyperkalaemia.

The infusion must be stopped immediately if any signs or symptoms of a suspected hypersensitivity reaction develop. Appropriate therapeutic countermeasures must be instituted as clinically indicated.

Paediatric use
Safety and effectiveness of Compound Sodium Lactate (Hartmanns) infusion solution in paediatric patients have not been established by adequate and well controlled trials; however, the use of electrolyte solutions in the paediatric population is referenced in the medical literature. Lactate-containing solutions should be administered with particular caution to neonates and infants <6 months of age. The precautions and adverse reactions identified for infants, children and adults should be observed in the paediatric population.

Geriatric use
Clinical studies of Compound Sodium Lactate (Hartmanns) infusion solution did not include sufficient numbers of subjects aged 65 and over to determine whether they respond differently from younger subjects. Other reported clinical experience has not identified differences in responses between the elderly and younger patients. In general, dose selection for an elderly patient should be cautious, usually starting at the low end of the dosing range, reflecting the greater frequency of decreased hepatic, renal, or cardiac function, and of concomitant disease or drug therapy.
4.5 Interaction with other medicines and other forms of interaction

Compound Sodium Lactate (Hartmanns) infusion solution should not be administered simultaneously with blood preparations (e.g. citrate anticoagulated/preserved blood) through the same administration set, because of a possibility or the likelihood of coagulation.

Concomitant administration with ceftriaxone is not recommended through the same infusion line (see Section 4.3 and 4.4) due to the risk of fatal ceftriaxone-calcium salt precipitation.

Administration of calcium may increase the effects of digitalis and lead to serious or fatal cardiac arrhythmias. Therefore larger volumes or faster infusion rates should be used with caution in patients treated with digitalis glycosides.

Caution is advised when administering Compound Sodium Lactate (Hartmanns) infusion solution to patients treated with thiazide diuretics or vitamin D as these can increase the risk of hypercalcaemia.

Caution is advised when administering Compound Sodium Lactate (Hartmanns) infusion solution to patients treated with medicines that may increase the risk of sodium and fluid retention such as carbenoxolone and corticosteroids (see Section 4.4).

Compound Sodium Lactate (Hartmanns) infusion solution may interfere with the elimination of medicines for which renal elimination is pH dependent. Renal clearance of acidic medicines such as salicylates, barbiturates and lithium may be increased. The renal clearance of alkaline medicines such as sympathomimetics (e.g. pseudoephedrine), dexamphetamine sulphate and fenfluramine hydrochloride may be decreased.

These products should not be administered concomitantly with potassium sparing diuretics (amiloride, spironolactone, triamterene), angiotensin converting enzyme (ACE) inhibitors, angiotensin II receptor antagonists (ARAs) or the immunosuppressants tacrolimus and cyclosporin. Simultaneous administration of these medicines can result in severe hyperkalaemia, particularly in patients with severe renal insufficiency.

4.6 Fertility, pregnancy and lactation

Fertility
Animal reproduction studies have not been conducted with Compound Sodium Lactate (Hartmanns) infusion solution. It is also not known whether these products can affect reproduction capacity.

Pregnancy (Category C)
There are no adequate data from the use of Compound Sodium Lactate (Hartmanns) infusion solution in pregnant women. The potential risks and benefits for each specific patient should be carefully considered before using Compound Sodium Lactate (Hartmanns) infusion solution in pregnant women.

Breast-feeding
There are no adequate data from the use of Compound Sodium Lactate (Hartmanns) infusion solution in lactating women. The potential risks and benefits for each specific patient should be carefully considered before using Compound Sodium Lactate (Hartmanns) infusion solution in lactating women.

4.7 Effects on ability to drive and use machines
There is no information on the effects of Compound Sodium Lactate (Hartmanns) infusion solution on the ability to operate an automobile or other heavy machinery.
4.8 Undesirable effects
Allergic reactions or anaphylactic/anaphylactoid symptoms such as localised or generalised urticaria, skin rash & erythema and itching/pruritus; skin swelling, peribital facial and/or laryngeal oedema (Quincke's oedema); chest tightness, chest pain, with tachycardia or bradycardia; nasal congestion, coughing, sneezing, bronchospasm and/or difficulty breathing have been reported during administration of Compound Sodium Lactate (Hartmanns) infusion.

Adverse reactions may occur due to the solution or the technique of administration including fever response, or infection at the site of injection. Prolonged intravenous infusion of this type of product may cause venous thrombosis or phlebitis extending from the site of injection, extravasation and hypervolaemia. If an adverse reaction does occur, discontinue the infusion, evaluate the patient, institute appropriate therapeutic countermeasures and save the remainder of the fluid for examination if deemed necessary.

Post-marketing Adverse Reactions
The following adverse reactions have been reported in the post-marketing experience:

IMMUNE SYSTEM DISORDERS: Hypersensitivity/infusion reactions, including Anaphylactic/Anaphylactoid reactions and the following manifestations:

Angioedema, chest pain, chest discomfort, decreased heart rate, tachycardia, blood pressure decreased, respiratory distress, bronchospasm, dyspnoea, cough, urticaria, rash, pruritus, erythema, flushing, throat irritation, paraesthesia’s, hypoesthesia oral, dysgeusia, nausea, anxiety, pyrexia, headache.

METABOLISM AND NUTRITION DISORDERS: Hyperkalaemia

GENERAL DISORDERS AND ADMINISTRATION SITE CONDITIONS: Infusion site reactions, including phlebitis, infusion site inflammation, infusion site swelling, infusion site rash, infusion site pruritus, infusion site erythema, infusion site pain, infusion site burning.

Class Reactions
Other adverse reactions reported with Lactated Ringer’s and 5% Dextrose Injection are:
Infusion site anaesthesia (numbness).

During administration of parenteral nutrition fat emulsions, two types of adverse reactions can occur:

Immediate reactions
At the beginning of the infusion, any of the following abnormal signs evoking a hypersensitivity reaction should be cause for immediate discontinuation of the infusion: sweating, shivering, cephalgia, dyspnoea.

Delayed reactions
During long-term parenteral nutrition of fat emulsions, the following adverse reactions have been observed:

Hepato-biliary disorders:
- increase of alkaline phosphatase, bilirubin and transaminases (ALT & AST)
- hepatomegaly
- icterus.
Blood and lymphatic system disorders:
- thrombocytopenia.

Reporting of suspected adverse reactions
Reporting suspected adverse reactions after authorisation of the medicine is important. It allows continued monitoring of the benefit/risk balance of the medicine. Healthcare professionals are asked to report any suspected adverse reactions https://nzphvc.otago.ac.nz/report

4.9 Overdose
There is no overdose experience with Compound Sodium Lactate (Hartmanns) infusion solution. No specific antidotes to this preparation are known. Should overdose occur, treat the symptoms and institute appropriate supportive measures as required.

An excessive volume or too high a rate of administration may lead to fluid and sodium overload with a risk of oedema (peripheral and/or pulmonary), particularly when renal sodium excretion is impaired. Excessive administration of lactate may lead to metabolic alkalosis, which may be accompanied by hypokalaemia. Excessive administration of potassium may lead to the development of hyperkalaemia, especially in patients with severe renal impairment. Excessive administration of calcium salts may lead to hypercalcaemia.

When assessing an overdose, any additives in the solution must also be considered.

For advice on the management of overdose please contact the National Poisons Centre on phone number: 0800 764 766 [0800 POISON] in New Zealand (or 131126 in Australia).

5 PHARMACOLOGICAL PROPERTIES

5.1 Pharmacodynamic properties

Pharmacotherapeutic group
Electrolytes.

ATC code
B05BB01.

Mechanism of action
A Multiple electrolyte intravenous solution is intended for restoring the electrolyte balance and water for hydration. A combination of multiple electrolyte and sodium lactate alkalinising agent, will provide electrolyte balance and normalise the pH of the acid-base balance of the physiological system.

Sodium is the major cation of extracellular fluid and functions principally in the control of water distribution, fluid and electrolyte balance and osmotic pressure of body fluids. Chloride, the major extracellular anion, closely follows the physiological disposition of sodium cation in maintenance of acid-base balance, isotonicity and electrodynamic characteristic of the cells.

In contrast to sodium ion, potassium is a major cation of the intracellular fluid (160mEq/litre of intracellular water) and functions principally in the control of body fluid composition and electrolyte balance. Potassium participates in carbohydrate utilisation, protein synthesis, and is critical in the regulation of nerve conduction and muscle contraction, particularly in the heart.

Calcium is essential for maintenance of the functional integrity of nervous, muscular, and skeletal system and cell membrane and capillary permeability. Calcium is the major component of the body...
skeleton. The calcium content in bone is continuously undergoing a process of resorption and formation. The normal concentration of calcium in plasma is between 2.2 to 2.6mmol per litre.

Sodium lactate is an alkalising agent. Lactate is slowly metabolised to bicarbonate and water. This reaction depends on the cellular oxidative activity. Under normal physiological conditions conversion of sodium lactate to bicarbonate requires about 1 – 2 hours. The bicarbonate metabolite then has similar actions to those of sodium bicarbonate preparations. That is, bicarbonate metabolites react with acid to produce carbon dioxide and water.

5.2 Pharmacokinetic properties

As Compound Sodium Lactate (Hartmanns) is directly administered to the systemic circulation, the bioavailability (absorption) of the active components is complete (100 per cent). Excess calcium is predominantly excreted by the renal system, as in the case of potassium and sodium excretion.

5.3 Preclinical safety data

Genotoxicity/Carcinogenicity
The active ingredients, potassium chloride, sodium chloride, calcium chloride, sodium lactate are neither carcinogenic nor mutagenic.

6 PHARMACEUTICAL PARTICULARS

6.1 List of excipients

The only excipient in these solutions is Water for Injection, q.s. to 1000mL.

No antimicrobial agent or buffer is included.

6.2 Incompatibilities

Additives may be incompatible. Check relevant literature for additive, solution and container compatibility prior to use. Complete information is not available. Those additives known to be incompatible should not be used. See also Sections 4.2 and 4.4.

6.3 Shelf life

24 months from date of manufacture.

6.4 Special precautions for storage

Store at or below 30°C.

6.5 Nature and contents of container

Compound Sodium Lactate (Hartmanns) infusion solution is supplied in Viaflex plastic containers in the following pack sizes:

<table>
<thead>
<tr>
<th>Code</th>
<th>Size (mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHB2323</td>
<td>500</td>
</tr>
<tr>
<td>AHB2324</td>
<td>1000</td>
</tr>
</tbody>
</table>

Note: Not all pack sizes may be marketed.

6.6 Special precautions for disposal and other handling

Any unused medicine or waste material should be disposed of in accordance with local requirements.

7 MEDICINE SCHEDULE

General Sale Medicine.
8 SPONSOR

Compound Sodium Lactate (Hartmanns) infusion solution is distributed in New Zealand by:
Baxter Healthcare Ltd
33 Vestey Drive
Mt Wellington
Auckland 1060
Phone (09) 574 2400.

Compound Sodium Lactate (Hartmanns) infusion solution is distributed in Australia by:
Baxter Healthcare Pty Ltd
1 Baxter Drive
Old Toongabbie, NSW 2146.

9 DATE OF FIRST APPROVAL
Date of publication in the New Zealand Gazette of consent to distribute the medicine:
22 August 1974.

10 DATE OF REVISION OF THE TEXT
13 September 2018.

SUMMARY TABLE OF CHANGES

<table>
<thead>
<tr>
<th>Section changed</th>
<th>Summary of new information</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>Document reformatted to SPC style.</td>
</tr>
</tbody>
</table>

Based on Australian PI most recent amendment 11 March 2014; and CCSI 41320120823.

Please refer to the Medsafe website (www.medsafe.govt.nz) for most recent data sheet.

Baxter, Viaflex are trademarks of Baxter International Inc.