1. **NEUPOGEN®**

Neupogen 300 mcg/mL solution for injection vial

Neupogen 300 mcg/0.5mL solution for injection pre-filled syringe (not available)

Neupogen 480 mcg/0.5mL solution for injection pre-filled syringe (not available)

2. **QUALITATIVE AND QUANTITATIVE COMPOSITION**

Each pre-filled syringe of Neupogen contains 300 mcg (equivalent to 30 million units) or 480 mcg (equivalent to 48 million units) of filgrastim in 0.5 mL of solution for injection.

Each vial of Neupogen contains 300 mcg (equivalent to 30 million units) of filgrastim in 1 mL of solution for injection.

Filgrastim is produced in a laboratory strain of Escherichia coli bacteria which has been genetically altered by the addition of a gene for the granulocyte-colony stimulating factor.

Excipient(s) with known effect

This medicine contains 25 mg sorbitol (E420) in each 300 and 480 microgram prefilled syringe.

This medicine contains 50 mg sorbitol (E420) in each 300 microgram vial.

This medicine contains less than 1 mmol sodium (23 mg) per 300 and 480 microgram prefilled syringes and per 300 microgram vial, that is to say essentially ‘sodium-free’.

For the full list of excipients, see section 6.1.

3. **PHARMACEUTICAL FORM**

Neupogen is a sterile, clear, colourless solution for injection, practically free from particles, for subcutaneous (SC) or intravenous (IV) injection.

4. **CLINICAL PARTICULARS**

4.1 **Therapeutic indications**

Established Cytotoxic Chemotherapy

Neupogen is indicated for reduction in the duration of neutropenia and the incidence of febrile neutropenia in patients treated with established cytotoxic chemotherapy for malignancy (with the exception of chronic myeloid leukaemia and myelodysplastic syndromes) and for the reduction in the duration of neutropenia and its clinical sequelae in patients undergoing myeloablative therapy followed by bone marrow transplantation.
considered to be at increased risk of prolonged severe neutropenia. The safety and
efficacy of Neupogen are similar in adults and children receiving cytotoxic chemotherapy.

Peripheral Blood Progenitor Cell Mobilisation (PBPC)

Neupogen is indicated for the mobilisation of autologous peripheral blood progenitor cells
alone, or following myelosuppressive chemotherapy and the mobilisation of peripheral
blood progenitor cells in normal donors (allogeneic PBPC).

Severe Chronic Neutropenia (SCN)

Long term administration of Neupogen is indicated in patients, children or adults, with
severe congenital, cyclic or idiopathic neutropenia with an Absolute Neutrophil Count
(ANC) $\leq 0.5 \times 10^9$/L, and a history of severe or recurrent infections, to increase neutrophil
counts and to reduce the incidence and duration of infection-related events.

HIV Infection

Neupogen is indicated for the treatment of persistent neutropenia (ANC $\leq 1.0 \times 10^9$/L) in
patients with advanced HIV infection, in order to reduce the risk of bacterial infections,
when other options to manage neutropenia are inappropriate.

4.2 Dose and method of administration

Neupogen therapy should only be given in collaboration with an oncology centre which
has experience in granulocyte-colony stimulating factor (G-CSF) treatment and
haematology and has the necessary diagnostic facilities. The mobilisation and apheresis
procedures should be performed in collaboration with an oncology haematology centre
with acceptable experience in this field and where the monitoring of haematopoietic
progenitor cells can be correctly performed.

Established Cytotoxic Chemotherapy

Dose

The recommended dose of Neupogen is 5 mcg/kg/day. The first dose of Neupogen
should not be administered less than 24 hours following cytotoxic chemotherapy.

Daily dosing with Neupogen should continue until the expected neutrophil nadir is
passed and the neutrophil count has recovered to the normal range. Following
established chemotherapy for solid tumours, lymphomas, and lymphoid leukaemia, it is
expected that the duration of treatment required to fulfil these criteria will be up to
14 days. Following induction and consolidation treatment for acute myeloid leukaemia
the duration of treatment may be substantially longer (up to 38 days) depending on the type, dose and schedule of cytotoxic chemotherapy used.

In patients receiving cytotoxic chemotherapy, a transient increase in neutrophil counts is typically seen 1 to 2 days after initiation of Neupogen therapy. However, for a sustained therapeutic response, Neupogen therapy should not be discontinued before the expected nadir has passed and the neutrophil count has recovered to the normal range. Premature discontinuation of Neupogen therapy, prior to the time of the expected neutrophil nadir, is not recommended.

Method of administration

Neupogen may be given as a daily SC injection or as a daily IV infusion diluted in 5% glucose solution given over 30 minutes (see section 6.6, Instructions for dilution). The SC route is preferred in most cases. There is some evidence from a study of single dose administration that IV dosing may shorten the duration of effect. The clinical relevance of this finding to multiple dose administration is not clear. The choice of route should depend on the individual clinical circumstances.

In patients treated with myeloablative therapy followed by bone marrow transplantation

Dose

The recommended starting dose of Neupogen is 10 mcg/kg/day. The first dose of Neupogen should not be administered less than 24 hours following cytotoxic chemotherapy but within 24 hours of bone marrow infusion.

Once the neutrophil nadir has been passed, the daily dose of Neupogen should be titrated against the neutrophil response as follows:

<table>
<thead>
<tr>
<th>Neutrophil count</th>
<th>Neupogen dose adjustment</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 1.0 x 10^9/L for 3 consecutive days</td>
<td>Reduce to 5 mcg/kg/day</td>
</tr>
</tbody>
</table>

Then, if ANC remains > 1.0 x 10^9/L for 3 more consecutive days

Discontinue Neupogen

If the ANC decreases to < 1.0 x 10^9/L during the treatment period, the dose of Neupogen should be re-escalated according to the above steps

ANC = absolute neutrophil count

The efficacy and safety of Neupogen given for longer than 28 days in this setting have not been established.
Method of administration

Neupogen may be given as a 30 minute or 24 hour IV infusion or 10 mcg/kg/day given by continuous 24 hour SC infusion. Neupogen should be diluted in 20 mL of 5% glucose solution (see section 6.6, Instructions for dilution).

Mobilisation of PBPC in patients undergoing myelosuppressive or myeloablative therapy followed by autologous PBPC transplantation with or without bone marrow transplantation.

Dose

The recommended dose of Neupogen for PBPC mobilisation when used alone is 10 mcg/kg/day for 5 to 7 consecutive days. Timing of leukapheresis: one or two leukaphereses on days 5 and 6 are often sufficient. In other circumstances, additional leukapheresis may be necessary. Neupogen dosing should be maintained until the last leukapheresis.

The recommended dose of Neupogen for PBPC mobilisation after myelosuppressive chemotherapy is 5 mcg/kg/day given daily by SC injection from the first day after completion of chemotherapy until the expected neutrophil nadir is passed and the neutrophil count has recovered to the normal range. Leukapheresis should be performed during the period when the ANC rises from $< 0.5 \times 10^9/L$ to $> 5.0 \times 10^9/L$. For patients who have not had extensive chemotherapy, one leukapheresis is often sufficient. In other circumstances, additional leukaphereses are recommended.

Method of administration

Neupogen for PBPC mobilisation when used alone:

Neupogen may be given as 24 hour SC continuous infusion or a single daily SC injection. For infusions, Neupogen should be diluted in 20 mL of 5% glucose solution (see section 6.6, Instructions for dilution).

Mobilisation of PBPC in normal donors prior to allogeneic PBPC transplantation

Dose

For PBPC mobilisation in normal donors, Neupogen should be administered at 10 mcg/kg/day for 4 to 5 consecutive days. Leukapheresis should be started at day 5 and continued until day 6 if needed in order to collect 4×10^6 CD34$^+$ cells/kg recipients bodyweight.
The safety and efficacy of Neupogen have not been assessed in normal donors < 16 years or > 60 years.

Method of administration

Neupogen should be given by SC injection.

Severe Chronic Neutropenia (SCN)

Dose

Congenital neutropenia: The recommended starting dose is 12 mcg/kg/day as a single dose or in divided doses.

Idiopathic or cyclic neutropenia: The recommended starting dose is 5 mcg/kg/day as a single dose or in divided doses.

Dose adjustment: Neupogen should be administered daily by SC injection until the neutrophil count has reached and can be maintained at more than 1.5 x 10⁹/L. When the response has been obtained the minimal effective dose to maintain this level should be established. Long term daily administration is required to maintain an adequate neutrophil count. After one to two weeks of therapy, the initial dose may be doubled or halved depending upon the patient's response. Subsequently the dose may be individually adjusted every 1 to 2 weeks to maintain the average neutrophil count between 1.5 x 10⁹/L and 10 x 10⁹/L. A faster schedule of dose escalation may be considered in patients presenting with severe infections. In clinical trials, 97% of patients who responded had a complete response at doses ≤ 24 mcg/kg/day.

The long-term safety of Neupogen administration above 24 mcg/kg/day in patients with severe chronic neutropenia has not been established.

Method of administration

Congenital neutropenia, idiopathic or cyclic neutropenia, Neupogen should be given by SC injection.

HIV Infection

Dose

For reversal of neutropenia:
The recommended starting dose of Neupogen is 1 mcg/kg/day given daily with titration up to a maximum of 4 mcg/kg/day until a normal neutrophil count is reached and can be
maintained (ANC > 2.0 x 10^9/L). In clinical studies, > 90% of patients responded at these doses, achieving reversal of neutropenia in a median of 2 days.

In a small number of patients (< 10%), doses up to 10 mcg/kg/day were required to achieve reversal of neutropenia.

For maintaining normal neutrophil counts:
When reversal of neutropenia has been achieved, the minimal effective dose to maintain a normal neutrophil count should be established. Initial dose adjustment to alternate day dosing with 300 mcg/day by SC injection is recommended. Further dose adjustment may be necessary, as determined by the patient's ANC, to maintain the neutrophil count at > 2.0 x 10^9/L. In clinical studies, dosing with 300 mcg/day on 1 to 7 days per week was required to maintain the ANC > 2.0 x 10^9/L, with the median dose frequency being 3 days per week. Long term administration may be required to maintain the ANC > 2.0 x 10^9/L.

Method of administration
Reversal of neutropenia or maintaining normal neutrophil counts: Neupogen should be given by SC injection.

Elderly
Clinical trials with Neupogen have included a small number of elderly patients but special studies have not been performed in this group and therefore specific dosage recommendations cannot be made.

Renal or hepatic impairment
Studies of Neupogen in patients with severe impairment of renal or hepatic function demonstrate that it exhibits a similar pharmacokinetic and pharmacodynamic profile to that seen in normal individuals. Dose adjustment is not required in these circumstances.

Paediatric population
The dosage recommendations in paediatric patients are the same as those in adults receiving myelosuppressive cytotoxic chemotherapy.

4.3 Contraindications
Neupogen should not be administered to patients with known hypersensitivity to E.coli-derived proteins, filgrastim or to any of the excipients listed in section 6.1.
4.4 Special warnings and precautions for use

Hypersensitivity

Hypersensitivity, including anaphylactic reactions, occurring on initial or subsequent treatment have been reported in patients treated with filgrastim. Permanently discontinue filgrastim in patients with clinically significant hypersensitivity. Do not administer filgrastim to patients with a history of hypersensitivity to filgrastim or pegfilgrastim.

Splenic Rupture and Splenomegaly

Cases of splenic rupture have been reported following administration of filgrastim G-CSFs. Some of these cases were fatal. Therefore, spleen size should be carefully monitored (e.g. clinical examination, ultrasound). A diagnosis of splenic rupture or splenomegaly should be considered in donors reporting left upper abdominal pain or shoulder tip pain.

Sickle Cell Crisis

Publications in the literature have reported that high leukocyte counts are disadvantageous prognostic factors in patients with sickle cell disease. Therefore, clinicians should exercise caution when administering Neupogen in patients with sickle cell trait or sickle cell disease, should institute close monitoring of appropriate clinical parameters and laboratory status and be attentive of the possible association of Neupogen with splenomegaly and vaso-occlusive crisis.

Sickle cell anaemia with crisis, in some cases fatal, has been reported with the use of Neupogen in patients with sickle cell trait or sickle cell disease. Physicians should use caution when prescribing Neupogen in patients with sickle cell trait or sickle cell disease.

Thrombocytopenia

Thrombocytopenia has been reported in patients receiving Neupogen. Platelet counts should be monitored closely.

Capillary Leak Syndrome

Capillary leak syndrome, characterised by hypotension, hypoalbuminaemia, oedema and haemoconcentration, has been reported very rarely. Patients who develop symptoms of capillary leak syndrome should be closely monitored and receive appropriate medical attention.
Bone Imaging

Monitoring of bone density may be indicated in patients with underlying osteoporotic bone diseases who undergo continuous therapy with Neupogen for more than six months.

Myeloid Progenitors

The effects of Neupogen in patients with substantially reduced myeloid progenitors have not been studied. Neupogen acts primarily on neutrophil precursors to exert its effect in elevating neutrophil counts. Therefore in patients with reduced precursors (such as those treated with extensive radiotherapy or chemotherapy or those with bone marrow infiltration by tumour), neutrophil response may be diminished.

Graft versus Host Disease

The effect of Neupogen on Graft versus Host Disease (GvHD) has not been defined.

Acute Respiratory Distress Syndrome

The onset of pulmonary signs, such as cough, fever and dyspnoea in association with radiological signs of lung infiltration and deterioration in pulmonary function may be preliminary signs of Acute Respiratory Distress Syndrome (ARDS). Neupogen should be discontinued and appropriate treatment given.

Glomerulonephritis

Glomerulonephritis has been reported in patients receiving filgrastim and pegfilgrastim. Generally, events of glomerulonephritis resolved after dose reduction or withdrawal of filgrastim and pegfilgrastim. Urinalysis monitoring is recommended.

Myelodysplastic Syndrome (MDS) and Acute Myeloid Leukaemia (AML) in Breast Cancer and Lung Cancer Patients

In the post-marketing observational study setting, MDS and AML have been associated with the use of filgrastim in conjunction with chemotherapy and/or radiotherapy in breast and lung cancer patients. Monitor patients for signs and symptoms of MDS/AML in these settings. There has been limited association between the occurrence of MDS and AML and the use of filgrastim in conjunction with chemotherapy and/or radiotherapy in breast cancer patients.

Aortitis
Aortitis has been reported in patients receiving Neupogen and may present with generalised signs and symptoms such as fever and increased inflammatory markers. Consider aortitis in patients who develop these signs and symptoms without known aetiology.

Excipients

Neupogen contains sorbitol as an excipient at a concentration of 50 mg/mL. It is unlikely that as a consequence of treatment with Neupogen alone that sufficient sorbitol will be infused to result in clinically relevant toxicity in affected individuals. However, in cases of HFI (Heredity Fructose Intolerance) caution is advised.

Neupogen contains less than 1 mmol (23 mg) sodium per 0.3 mg/mL, e.g., essentially sodium free (see section 2 and section 6.1).

Malignant Cell Growth

Granulocyte-colony stimulating factor can promote growth of myeloid cells *in vitro*, and similar effects may be seen on some non-myeloid cells *in vitro*.

The safety and efficacy of Neupogen administration in patients with myelodysplastic syndrome, or chronic myelogenous leukaemia have not been established. Neupogen is not indicated for these conditions. Particular care should be taken to distinguish the diagnosis of blast transformation of chronic myeloid leukaemia from acute myeloid leukaemia (AML).

In view of limited safety and efficacy data in patients with secondary AML, Neupogen should be administered with caution.

The safety and efficacy of Neupogen administration in *de novo* AML patients aged < 55 years with good cytogenetics [t(8;21), t(15;17), and inv(16)] have not been established.

Special precautions in patients receiving cytotoxic chemotherapy

Leukocytosis

White blood cell counts of 100 x 10^9/L or greater have been observed in less than 5% of patients receiving Neupogen at doses above 3 mcg/kg/day. No undesirable effects directly attributable to this degree of leukocytosis have been reported. However, in view of the potential risks associated with severe leukocytosis, a white blood cell count should be performed at regular intervals during Neupogen therapy. If leukocyte counts exceed 50 x 10^9/L after the expected nadir, Neupogen should be discontinued immediately.
However, during the period of administration of Neupogen for PBPC mobilisation, Neupogen should be discontinued or its dosage should be reduced if the leukocyte counts rise to > 70 x 10^9/L.

Risks associated with increased doses of chemotherapy

Special caution should be used when treating patients with high-dose chemotherapy because improved tumour outcome has not been demonstrated, and intensified doses of chemotherapeutic agents may lead to increased toxicities including cardiac, pulmonary, neurological and dermatological effects (please refer to the prescribing information of the specific chemotherapy agents used).

Treatment with Neupogen alone does not preclude thrombocytopenia and anaemia due to myelosuppressive chemotherapy. Because of the potential of receiving higher doses of chemotherapy (e.g. full doses of the prescribed schedule), the patient may be at greater risk of thrombocytopenia and anaemia. Regular monitoring of platelet count and haematocrit is recommended. Special care should be taken when administering single or combination chemotherapeutic agents which are known to cause severe thrombocytopenia.

The use of Neupogen-mobilised PBPC has been shown to reduce the depth and duration of thrombocytopenia following myelosuppressive or myeloablative chemotherapy.

Special precautions in patients undergoing myelosuppressive or myeloablative therapy followed by autologous PBPC transplantation

Mobilisation

There are no prospectively randomised comparisons of the two recommended mobilisation methods (Neupogen alone, or in combination with myelosuppressive chemotherapy) within the same patient population. The degree of variation between individual patients and between laboratory assays of CD34+ cells mean that direct comparison between different studies is difficult. It is therefore difficult to recommend an optimum method. The choice of mobilisation method should be considered in relation to the overall objectives of treatment for an individual patient.
Prior exposure to cytotoxic agents

Patients who have undergone very extensive prior myelosuppressive therapy may not show sufficient mobilisation of PBPC to achieve the recommended minimum yield (≥ 2.0 x 10^6 CD34+ cells/kg) or acceleration of platelet recovery, to the same degree.

Some cytotoxic agents exhibit particular toxicities to the haematopoietic progenitor pool, and may adversely affect progenitor mobilisation. Agents such as melphalan, carmustine (BCNU), and carboplatin, when administered over prolonged periods prior to attempts at progenitor mobilisation may reduce progenitor yield. However, the administration of melphalan, carboplatin or BCNU together with Neupogen, has been shown to be effective for progenitor mobilisation. When a peripheral blood progenitor cell transplantation is envisaged it is advisable to plan the stem cell mobilisation procedure early in the treatment course of the patient. Particular attention should be paid to the number of progenitors mobilised in such patients before the administration of high-dose chemotherapy. If yields are inadequate, as measured by the criteria above, alternative forms of treatment, not requiring progenitor support, should be considered.

Assessment of progenitor cell yields

In assessing the number of progenitor cells harvested in patients treated with Neupogen, particular attention should be paid to the method of quantitation. The results of flow cytometric analysis of CD34+ cell numbers vary depending on the precise methodology used and recommendations of numbers based on studies in other laboratories need to be interpreted with caution.

Statistical analysis of the relationship between the number of CD34+ cells re-infused and the rate of platelet recovery after high-dose chemotherapy indicates a complex but continuous relationship.

The recommendation of a minimum yield of ≥ 2.0 x 10^6 CD34+ cells/kg is based on published experience resulting in adequate haematologic reconstitution. Yields in excess of this appear to correlate with more rapid recovery, those below with slower recovery.

Special precautions in normal donors undergoing PBPC mobilisation prior to allogeneic PBPC transplantation

Mobilisation of PBPC does not provide a direct clinical benefit to normal donors and should only be considered for the purposes of allogeneic stem cell transplantation.
PBPC mobilisation should be considered only in donors who meet normal clinical and laboratory eligibility criteria for stem cell donation with special attention to haematological values and infectious disease.

Transient thrombocytopenia (platelets < 100 x 10^9/L) following Neupogen administration and leukapheresis was observed in 35% of subjects studied. Among these, two cases of platelets < 50 x 10^9/L were reported and attributed to the leukapheresis procedure.

If more than one leukapheresis is required, particular attention should be paid to donors with platelets < 100 x 10^9/L prior to leukapheresis; in general apheresis should not be performed if platelets < 75 x 10^9/L.

Leukapheresis should not be performed in donors who are anticoagulated or who have known defects in haemostasis.

Neupogen administration should be discontinued or its dosage should be reduced if the leukocyte counts rise to > 70 x 10^9/L.

Donors who receive G-CSFs for PBPC mobilisation should be monitored until haematological indices return to normal.

A risk of promotion of a malignant myeloid clone cannot be excluded. It is recommended that the apheresis centre perform a systematic record and tracking of the stem cell donors to ensure monitoring of long-term safety.

Special precautions in recipients of allogeneic PBPC mobilised with Neupogen

Current data indicate that immunological interactions between the allogeneic PBPC graft and the recipient may be associated with an increased risk of acute and chronic GvHD when compared with bone marrow transplantation.

Special precautions in Patients with Severe Chronic Neutropenia (SCN)

Transformation to leukaemia or myelodysplastic syndrome (MDS)

Special care should be taken in the diagnosis of SCN to distinguish it from other haematopoietic disorders such as aplastic anaemia, myelodysplasia and myeloid leukaemia. Complete blood cell counts with differential and platelet counts, and an evaluation of bone marrow morphology and karyotype should be performed prior to treatment.

There was a low frequency (approximately 3%) of myelodysplastic syndromes or leukaemia in clinical trial patients with severe chronic neutropenia treated with
Neupogen. This observation has only been made in patients with congenital neutropenia (Kostmann’s syndrome). MDS and leukaemias are natural complications of the disease and are of uncertain relation to Neupogen therapy. A subset of approximately 12% of patients who had normal cytogenetic evaluations at baseline were subsequently found to have abnormalities, including monosomy 7, on routine repeat evaluation. If patients with severe chronic neutropenia develop abnormal cytogenetics, the risks and benefits of continuing Neupogen should be carefully weighed; Neupogen should be discontinued if MDS or leukaemia occur. It is currently unclear whether long-term treatment of patients with severe chronic neutropenia will predispose patients to cytogenetic abnormalities, MDS or leukaemic transformation. It is recommended to perform morphologic and cytogenetic bone marrow examinations in patients with Kostmann’s syndrome at regular intervals (approximately every 12 months).

Blood cell counts

Platelet counts should be monitored closely, especially during the first few weeks of Neupogen therapy. Consideration should be given to intermittent cessation or decreasing the dose of Neupogen in patients who develop thrombocytopenia, e.g. platelets consistently < 100,000/mm3. Other blood cell changes occur, including anaemia and transient increases in myeloid progenitors, which require close monitoring of cell counts.

Others

Causes of transient neutropenia, such as viral infections, should be excluded. Splenomegaly is a direct effect of treatment with Neupogen. 31% of patients with SCN in studies were documented as having palpable splenomegaly. Increases in volume, measured radiographically, occurred early during Neupogen therapy and tended to plateau. Dose reductions were noted to slow or stop the progression of splenomegaly, and in 3% of patients a splenectomy was required. Spleen size should be evaluated regularly. Abdominal palpation should be sufficient to detect abnormal increases in splenic volume.

Haematuria/proteinuria occurred in a small number of patients. Regular urinanalysis should be performed to monitor this event.

The safety and efficacy in neonates and patients with autoimmune neutropenia have not been established.
Special Precautions in Patients with HIV Infection

Blood cell counts

ANC should be monitored closely, especially during the first few weeks of Neupogen therapy. Some patients may respond very rapidly and with a considerable increase in neutrophil count to the initial dose of Neupogen. It is recommended that the ANC is measured daily for the first 2 - 3 days of Neupogen administration. Thereafter, it is recommended that the ANC is measured at least twice per week for the first two weeks and subsequently once per week or once every other week during maintenance therapy. During intermittent dosing with 300 mcg/day of Neupogen, there can be wide fluctuations in the patient's ANC over time. In order to determine a patient's trough or nadir ANC, it is recommended that blood samples are taken for ANC measurement immediately prior to any scheduled dosing with Neupogen.

Risk associated with increased doses of myelosuppressive medications

Treatment with Neupogen alone does not preclude thrombocytopenia and anaemia due to myelosuppressive medications. As a result of the potential to receive higher doses or a greater number of these medications with Neupogen therapy, the patient may be at higher risk of developing thrombocytopenia and anaemia. Regular monitoring of blood counts is recommended (see Blood cell counts above).

Infections and malignancies causing myelosuppression

Neutropenia may be due to bone marrow infiltrating opportunistic infections such as *Mycobacterium avium* complex or malignancies such as lymphoma. In patients with known bone marrow infiltrating infections or malignancy, consider appropriate therapy for treatment of the underlying condition, in addition to administration of Neupogen for treatment of neutropenia. The effects of Neupogen on neutropenia due to bone marrow infiltrating infection or malignancy have not been well established.

Laboratory Monitoring

Immunogenicity

As with all therapeutic proteins, there is a potential for immunogenicity. Considering all sources of data on immunogenicity, rates of generation of antibodies against filgrastim is generally low. Binding antibodies do develop as expected with all biologics; however, they were not associated with neutralising activity or adverse clinical consequences.
The detection of antibody formation is highly dependent on the sensitivity and specificity of the assay. Additionally, the observed incidence of antibody (including neutralising antibody) positivity in an assay may be influenced by several factors, including assay methodology, sample handling, timing of sample collection, concomitant medications, and underlying disease. For these reasons, comparison of the incidence of antibodies to filgrastim with the incidence of antibodies to other products may be misleading.

Laboratory Tests

Monitoring of Complete Blood Count (CBC) during Neupogen therapy is recommended.

Paediatric population

Established cytotoxic chemotherapy

The safety and efficacy of Neupogen are similar in adults and children receiving cytotoxic chemotherapy.

In patients undergoing myelosuppressive or myeloablative therapy followed by autologous PBPC transplantation

The safety and efficacy of Neupogen have not been assessed in normal donors < 16 years.

In patients with SCN

The safety and efficacy in neonates have not been established. Long term administration of Neupogen is indicated in children with severe congenital, cyclic or idiopathic neutropenia with an ANC ≤ 0.5 x 10^9/L, and a history of severe or recurrent infections, to increase neutrophil counts and to reduce the incidence and duration of infection-related events.

Paediatric use in the SCN and cancer settings

Sixty-five percent of patients studied in the SCN trial program were under 18 years of age. The efficacy of treatment was clear for this age group, which included most patients with congenital neutropenia. There were no differences in the safety profiles for paediatric patients treated for severe chronic neutropenia.

Data from clinical studies in paediatric patients indicate that the safety and efficacy of Neupogen are similar in both adults and children receiving cytotoxic chemotherapy.
Elderly population

In patients undergoing myelosuppressive or myeloablative therapy followed by autologous PBPC transplantation

The safety and efficacy of Neupogen have not been assessed in normal donors > 60 years of age.

4.5 Interaction with other medicines and other forms of interaction

Cytotoxic chemotherapy

The safety and efficacy of Neupogen given on the same day as myelosuppressive cytotoxic chemotherapy have not been definitively established. In view of the sensitivity of rapidly dividing myeloid cells to myelosuppressive cytotoxic chemotherapy, the use of Neupogen is not recommended in the period from 24 hours before to 24 hours after chemotherapy (see section 4.2). Preliminary evidence from a small number of patients treated concomitantly with Neupogen and 5-fluorouracil indicates that the severity of neutropenia may be exacerbated. Possible interactions with other haematopoietic growth factors and cytokines have not yet been investigated in clinical trials.

Lithium

The potential for pharmacodynamic interaction with lithium, which also promotes the release of neutrophils, has not been specifically investigated. There is no evidence that such an interaction would be harmful.

Bone Imaging

Increased haematopoietic activity of the bone marrow in response to growth factor therapy has been associated with transient positive bone imaging changes. This should be considered when interpreting bone-imaging results.

4.6 Fertility, pregnancy and lactation

Pregnancy

Pregnancy Category: B3

The safety of Neupogen has not been established in pregnant women. There are reports in the literature where the transplacental passage of filgrastim in pregnant women has been demonstrated. Studies in animals have shown reproductive toxicity. In pregnancy, the possible risk of Neupogen use to the fetus must be weighed against the expected therapeutic benefit.
Breast-feeding

It is not known whether Neupogen is secreted in human milk. Neupogen is not recommended for use in nursing women.

Fertility

Filgrastim did not affect reproductive performance or fertility in male or female rats (see section 5.3).

4.7 Effects on ability to drive and use machines

No effects on ability to drive and use machines have been reported.

4.8 Undesirable effects

Summary of safety profile

Bone pain and pain in extremity occurred at a higher incidence in filgrastim-treated patients as compared with placebo-treated patients across all indications.

Administration of Neupogen at the recommended dosage is frequently associated with musculoskeletal pain specifically in medullar bones. This is usually mild or moderate (10%), but occasionally severe (3%), and is generally controlled with standard analgesics.

In combined clinical trial data involving a total of 5004 patients, adverse reactions are listed below. Adverse reactions observed in the combined clinical trial data which are present in the adverse reaction tables by indication below, are not included in this list:

Very common (≥ 1/10) nausea, vomiting, pyrexia, fatigue, and headache.

Common (≥ 1/100 and < 1/10) hypertension, pain, oral pain, oropharyngeal pain, haemoptysis, chest pain, back pain, arthralgia, malaise, cough, oedema peripheral, decreased appetite, constipation, sepsis, bronchitis, upper respiratory tract infection, urinary tract infection, muscle spasms, dizziness, hypoesthesia, paraesthesia, insomnia, erythema and transfusion reaction.

Uncommon (≥ 1/1000 and < 1/100) hypersensitivity, lung infiltration and rash maculo-papular.

Rare (≥ 1/10,000 and < 1/1,000) glomerulonephritis, extramedullary haemotopoiesis.
In normal donors undergoing PBPC mobilisation the most commonly reported undesirable effect was mild to moderate transient musculoskeletal pain.

In patients with SCN, the most frequent clinical adverse events attributed to Neupogen were bone pain and general musculoskeletal pain. Undesirable effects related to Neupogen therapy in SCN patients have been reported and for some their frequency tends to decrease with time.

In clinical studies in patients with HIV, the only undesirable effects that were consistently considered to be related to Neupogen administration were musculoskeletal pain, predominantly mild to moderate bone pain and myalgia. The incidence of these events was similar to that reported in cancer patients.

Tabulated list of adverse reactions

The data in the tables below describe adverse reactions reported from clinical trials and spontaneous reporting. Within each frequency grouping, undesirable effects are presented in order of decreasing seriousness. Data are presented separately for cancer patients, PBPC mobilisation in normal donors, SCN patients and patients with HIV, reflecting different adverse reactions in these populations.

Cancer patients

<table>
<thead>
<tr>
<th>System Organ Class</th>
<th>Very common (≥ 1/10)</th>
<th>Common (≥ 1/100 to < 1/10)</th>
<th>Uncommon (≥ 1/1,000 to < 1/100)</th>
<th>Rare (≥ 1/10,000 to < 1/1,000)</th>
<th>Very rare (< 1/10,000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immune system disorders</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Allergic reaction</td>
</tr>
<tr>
<td>Metabolic and nutrition disorders</td>
<td></td>
<td></td>
<td>Anorexia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td></td>
<td></td>
<td>Headache</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respiratory disorders</td>
<td></td>
<td></td>
<td>Cough Pharyngo-laryngeal pain</td>
<td></td>
<td>Lung infiltration</td>
</tr>
<tr>
<td>System Organ Class</td>
<td>Very common (≥ 1/10)</td>
<td>Common (≥ 1/100 to < 1/10)</td>
<td>Uncommon (≥ 1/1,000 to < 1/100)</td>
<td>Rare (≥ 1/10,000 to < 1/1,000)</td>
<td>Very rare (< 1/10,000)</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>----------------------</td>
<td>-----------------------------</td>
<td>----------------------------------</td>
<td>---------------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>Nausea Vomiting</td>
<td>Constipation Diarrhoea</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skin and subcutaneous disorders</td>
<td>Alopecia Rash</td>
<td></td>
<td></td>
<td>Acute febrile neutrophilic dermatosis Cutaneous vasculitis</td>
<td></td>
</tr>
<tr>
<td>Musculoskeletal disorders</td>
<td>Chest pain Musculo-skeletal pain</td>
<td></td>
<td></td>
<td>Rheumatoid arthritis exacerbation</td>
<td></td>
</tr>
<tr>
<td>Renal and urinary disorders</td>
<td></td>
<td></td>
<td></td>
<td>Urinary abnormalities</td>
<td></td>
</tr>
<tr>
<td>General disorders and administration site condition</td>
<td>Fatigue Asthenia Mucosal inflammation</td>
<td></td>
<td>Pain</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Investigations</td>
<td>Blood gamma-glutamyl-transferase (GGT) increased Blood alkaline phosphatase increased Blood lactate dehydrogenase increased Blood uric acid increased</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Normal donors undergoing PBPC mobilisation

<table>
<thead>
<tr>
<th>System Organ Class</th>
<th>Very common (≥ 1/10)</th>
<th>Common (≥ 1/100 to < 1/10)</th>
<th>Uncommon (≥ 1/1,000 to < 1/100)</th>
<th>Rare (≥ 1/10,000 to < 1/1,000)</th>
<th>Very rare (< 1/10,000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood and lymphatic system disorders</td>
<td>Leukocytosis</td>
<td>Splenomegaly</td>
<td>Spleen disorder</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immune System disorders</td>
<td></td>
<td></td>
<td>Severe allergic reaction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metabolic and nutrition disorders</td>
<td></td>
<td></td>
<td>Hyperuricaemia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>Headache</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respiratory disorders</td>
<td></td>
<td></td>
<td>Haemoptysis Lung infiltration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Musculoskeletal disorders</td>
<td>Musculoskeletal pain</td>
<td></td>
<td>Rheumatoid arthritis exacerbation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Investigations</td>
<td>Blood alkaline phosphatase increased</td>
<td>Serum glutamic-oxaloacetic-transaminase (SGOT) increased</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Patients with SCN

<table>
<thead>
<tr>
<th>System Organ Class</th>
<th>Very common (≥ 1/10)</th>
<th>Common (≥ 1/100 to < 1/10)</th>
<th>Uncommon (≥ 1/1,000 to < 1/100)</th>
<th>Rare (≥ 1/10,000 to 1/1,000)</th>
<th>Very rare (< 1/10,000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood and lymphatic system disorders</td>
<td>Anaemia</td>
<td>Thrombocytopenia</td>
<td>Spleen disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metabolic and nutrition disorders</td>
<td>Hyperuricaemia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td></td>
<td>Headache</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td></td>
<td>Diarrhoea</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hepatobiliary disorders</td>
<td></td>
<td>Hepatomegaly</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skin and subcutaneous disorders</td>
<td></td>
<td>Alopecia</td>
<td>Rash</td>
<td>Cutaneous vasculitis</td>
<td></td>
</tr>
<tr>
<td>Musculoskeletal disorders</td>
<td>Musculo-skeletal pain</td>
<td></td>
<td>Osteoporosis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Renal and urinary disorders</td>
<td></td>
<td></td>
<td>Haematuria</td>
<td>Proteinuria</td>
<td></td>
</tr>
<tr>
<td>General disorders and administration site condition</td>
<td></td>
<td>Injection site pain</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Investigations</td>
<td>Decreased glucose</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Blood alkaline phosphatase</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
System Organ Class | Very common (≥ 1/10) | Common (≥ 1/100 to < 1/10) | Uncommon (≥ 1/1,000 to < 1/100) | Rare (≥ 1/10,000 to 1/1,000) | Very rare (< 1/10,000)
---|---|---|---|---|---
Increased Blood lactate dehydrogenase increased

Patients with HIV

System Organ Class	Very common (≥ 1/10)	Common (≥ 1/100 to < 1/10)	Uncommon (≥ 1/1,000 to < 1/100)	Rare (≥ 1/10,000 to 1/1,000)	Very rare (< 1/10,000)
Blood and lymphatic system disorders | Splenomegaly
Musculoskeletal disorders | Bone pain | Musculoskeletal pain | Myalgia

Adverse reactions from spontaneous reporting

Cases of pulmonary haemorrhage and haemoptysis have been reported in patients receiving Neupogen.

Cases of aortitis have been reported in patients receiving Neupogen.

Cases of myelodysplastic syndrome and acute myeloid leukaemia have been reported in breast and lung cancer patients receiving Neupogen in conjunction with chemotherapy and/or radiotherapy. Events of pseudogout have been reported very rarely (estimated 0.03 cases per 100,000 exposures [0.00003%]) in patients with cancer treated with Neupogen.

Cases of decreased bone density and osteoporosis have been reported commonly (≥ 1/100 to < 1/10) in paediatric patients with SCN receiving chronic treatment with Neupogen.

Cases of extramedullary haematopoiesis have been reported rarely (≥ 1/10,000 and < 1/1,000) in patients receiving Neupogen.
Description of selected adverse reactions

Allergic reactions

Allergic-type reactions, including anaphylactic reactions, rash, and urticaria, occurring on initial or subsequent treatment have been reported in patients receiving Neupogen; approximately half of these were associated with the initial dose. Overall, reports were more common after IV administration. In some cases, symptoms have recurred with rechallenge, suggesting a causal relationship.

Allergic-type reactions to filgrastim have rarely been reported in post marketing experience. Symptoms suggestive of severe allergic reactions have been reported very rarely in normal donors.

Neupogen should be permanently discontinued in patients who experience a serious allergic reaction.

Cutaneous vasculitis

Very rare events of cutaneous vasculitis have been reported in cancer patients treated with Neupogen. During long-term use, cutaneous vasculitis has been reported in 2% of SCN patients. The mechanism of vasculitis in patients receiving Neupogen is unknown.

Respiratory disorders

Rare pulmonary adverse effects including interstitial pneumonia, pulmonary oedema, and lung infiltration have been reported in patients with cancer following administration of Neupogen, some cases with an outcome of respiratory failure or ARDS, which may be fatal.

For allogeneic (also called normal or healthy) donors, pulmonary adverse events (haemoptysis, lung infiltration) have been very rarely reported (< 0.01%).

Splenomegaly and Splenic rupture

Cases of splenomegaly and splenic rupture have been reported following administration of Neupogen. Some cases of splenic rupture were fatal (see section 4.4).

Common, but generally asymptomatic, cases of splenomegaly have been reported in normal donors undergoing PBPC mobilisation.

Splenomegaly was reported to be related to Neupogen therapy in < 3% of patients with HIV. In all cases this was mild or moderate on physical examination and the clinical course was benign; no patients had a diagnosis of hypersplenism and no patients
underwent splenectomy. As splenic enlargement is a common finding in patients with HIV infection and is present to varying degrees in most patients with AIDS, the relationship to Neupogen treatment is unclear.

Splenomegaly, which may be progressive in a minority of cases, has also been reported in SCN patients

Sickle cell anaemia

Isolated cases of sickle cell anaemia with crisis, in some cases fatal, have been reported in patients with sickle cell disease.

Exacerbation of rheumatoid arthritis

Exacerbation of rheumatoid arthritis has been observed in individual cases in patients with cancer and normal donors.

Investigations

Reversible, dose-dependent and usually mild-to-moderate increases in blood uric acid, blood alkaline phosphatase, blood lactate dehydrogenase and gamma-glutamyl transpeptidase (GGT), with no associated clinical effects, have been seen in patients receiving Neupogen after cytotoxic chemotherapy.

Transient, minor increases in blood alkaline phosphatase, blood lactate dehydrogenase, serum glutamic-oxaloacetic transaminase (SGOT) and blood uric acid have been reported in normal donors receiving Neupogen; these were without clinical sequelae.

In SCN patients transient increases with no clinical symptoms were observed in blood uric acid, blood lactate dehydrogenase and blood alkaline phosphatase. Transient, moderate decreases in non-fasting blood glucose have also been seen.

Adverse reactions in cancer patients

In clinical trials in cancer patients, Neupogen did not increase the incidence of clinical undesirable effects associated with cytotoxic chemotherapy. Undesirable effects reported with equal frequency in patients treated with Neupogen/chemotherapy and placebo/chemotherapy included nausea and vomiting, alopecia, diarrhoea, fatigue, anorexia, mucositis, headache, cough, rash, chest pain, asthenia, oral pain, constipation and pain. Less frequent adverse events include urinary abnormalities (predominantly mild or moderate dysuria). Transient decreases in blood pressure, not requiring clinical treatment, have been reported occasionally.
Vascular disorders (e.g. veno-occlusive disease and fluid volume disturbances) have been reported occasionally in patients undergoing high dose chemotherapy followed by autologous bone marrow transplantation. The causal association with Neupogen has not been established.

Adverse reactions in PBPC mobilisation in normal donors

Leukocytosis (WBC > 50 x 10^9/L) was observed in 41% of donors and transient thrombocytopenia (platelets < 100 x 10^9/L) following Neupogen and leukapheresis was observed in 35% of donors.

Adverse reactions SCN patients

Undesirable effects possibly related to Neupogen therapy and typically occurring in < 2% of SCN patients were injection site reaction, headache, hepatomegaly, arthralgia, alopecia, osteoporosis and rash.

Headache and diarrhoea have been reported shortly after starting Neupogen therapy, typically in less than 10% of patients. Thrombocytopenia, anaemia and epistaxis have also been reported. There have been very few instances of proteinuria/haematuria.

Reporting of suspected adverse reactions

Reporting suspected adverse reactions after authorisation of the medicine is important. It allows continued monitoring of the benefit/risk balance of the medicine. Healthcare professionals are asked to report any suspected adverse reactions to https://nzphvc.otago.ac.nz/reporting/

4.9 Overdose

The effects of Neupogen overdose have not been established.

Doses up to 138 mcg/kg/day were administered to patients in bone marrow transplant (BMT) studies without toxic effects.

Discontinuation of Neupogen therapy usually results in a 50% decrease in circulating neutrophils within one to two days, with a return to normal levels in one to seven days.

For advice on the management of overdose please contact the National Poisons Centre on 0800 POISON (0800 764766).
5. PHARMACOLOGICAL PROPERTIES

Filgrastim (recombinant-methionyl human granulocyte-colony stimulating factor, r-metHuG-CSF, from *E. coli* K12) is a highly purified non-glycosylated protein comprising 175 amino acids.

5.1 Pharmacodynamic properties

Pharmacotherapeutic group: immunostimulants, colony stimulating factors, ATC code: L03AA02

Pharmacodynamic effects

Mechanism of action

Human granulocyte-colony stimulating factor is a glycoprotein, which regulates the production and release of functional neutrophils from the bone marrow. Neupogen containing r-metHuG-CSF (filgrastim), causes marked increases in peripheral blood neutrophil counts within 24 hours, with minor increases in monocytes. In some severe chronic neutropenia patients Neupogen can also induce a minor increase in the number of circulating eosinophils and basophils relative to baseline; some of these patients may present with eosinophilia or basophilia already prior to treatment.

Elevations of neutrophil counts are dose-dependent at recommended doses. Neutrophils produced by the human body in response to Neupogen show normal or enhanced function as demonstrated by tests of chemotactic and phagocytic function. Following termination of Neupogen therapy, circulating neutrophil counts decrease by 50% within one to two days, and to normal levels within one to seven days.

Treatment with Neupogen in patients undergoing cytotoxic chemotherapy or myeloablative therapy followed by bone marrow transplantation leads to a significant reduction in the incidence, severity and duration of neutropenia and febrile neutropenia, and consequently, fewer admissions to the hospital, shorter duration of hospitalisation and less antibiotics as compared to patients on cytotoxic chemotherapy alone.

Treatment with Neupogen significantly reduces the duration of febrile neutropenia, antibiotic use and hospitalisation after induction chemotherapy for acute myelogenous leukaemia. The incidence of fever and documented infections was not reduced in this setting.

Use of Neupogen, either alone, or after chemotherapy, mobilises haematopoietic progenitor cells into the peripheral blood. These autologous PBPC may be harvested...
and infused after high-dose cytotoxic therapy, either in place of, or in addition to bone marrow transplantation. Infusion of PBPC accelerates haematopoietic recovery reducing the duration of risk for haemorrhagic complications and the need for platelet transfusions.

Recipients of allogeneic PBPCs mobilised with Neupogen experienced significantly more rapid haematological recovery, leading to a significant decrease in time to unsupported platelet recovery when compared with allogeneic bone marrow transplantation.

Use of Neupogen in patients, children or adults, with SCN (severe congenital, cyclic and idiopathic neutropenia) induces a sustained increase in absolute neutrophil counts in peripheral blood and a reduction of infection and related events.

Use of Neupogen in patients with HIV infection maintains normal neutrophil counts to allow scheduled dosing of antiviral and/or other myelosuppressive medication. There is no evidence that patients with HIV infection treated with Neupogen show an increase in HIV replication.

As with other haematopoietic growth factors, G-CSF has shown in vitro stimulating properties on human endothelial cells.

5.2 Pharmacokinetic properties

Absorption

After SC administration, filgrastim is rapidly absorbed, and peak serum concentrations are attained 2 to 8 hours after dosing. Elimination half-life after IV and SC dosing is usually between 2 and 4 hours. Clearance and half-life are dependent on dose and neutrophil count. When neutrophil-mediated clearance is saturated by high filgrastim concentrations or is diminished by neutropenia, the linear clearance pathway predominates and the pharmacokinetics appear linear. The absolute bioavailability of filgrastim after SC administration is estimated to be 62% for a 375 mcg dose and 72% for a 750 mcg dose. After discontinuation of dosing, filgrastim concentrations decrease to endogenous concentrations within 24 hours.

A decrease in filgrastim serum concentrations is evidenced upon multiple dosing in healthy subjects and in cancer subjects before chemotherapy. This increase in clearance of filgrastim is dose dependent, and the magnitude of increase appears closely related to the degree of neutrophilia in the recipients, which is consistent with increased neutrophil-mediated clearance by the expanded neutrophil pool. In subjects
receiving filgrastim after chemotherapy, plateau serum concentrations are maintained until onset of hematopoietic recovery.

Distribution

There is a positive linear correlation between the dose and the serum concentration of Neupogen, whether administered IV or SC. Following SC administration of recommended doses, serum concentrations were maintained above 10 ng/mL for 8 to 16 hours. The volume of distribution (Vd) in blood is approximately 150 mL/kg.

Elimination

Continuous infusion with Neupogen over a period of up to 28 days, in patients recovering from autologous bone-marrow transplantation, resulted in no evidence of filgrastim accumulation and comparable elimination half-lives.

Clearance of Neupogen has been shown to follow first-order pharmacokinetics after both SC and IV administration. The mean serum elimination half-life of Neupogen is approximately 3.5 hours, with a clearance rate of approximately 0.6 mL/min/kg.

Paediatric population

The pharmacokinetics of filgrastim in paediatric patients after chemotherapy is similar to those in adults receiving the same weight-normalised doses, suggesting no age-related differences in the pharmacokinetics of filgrastim.

Elderly population

Pharmacokinetic data in geriatric patients (> 65 years) are not available.

Renal or hepatic impairment

Studies of filgrastim in patients with severe impairment of renal or hepatic function demonstrate that it exhibits a similar pharmacokinetic and pharmacodynamic profile to that seen in normal individuals. Dose adjustment is not required in these circumstances. A trend towards higher systemic exposure to filgrastim is observed in patients with end-stage renal disease (ESRD) compared with healthy subjects and subjects with creatinine clearance of 30 - 60 mL/min.
5.3 Preclinical safety data

Carcinogenicity

The carcinogenic potential of filgrastim has not been studied. Filgrastim failed to induce bacterial gene mutations in either the presence or absence of a drug metabolising enzyme system.

Certain malignant cells have been shown to express G-CSF receptors. The possibility that filgrastim can act as a growth factor for any tumour type cannot be excluded.

Impairment of fertility

Filgrastim had no observed effect on the fertility of male or female rats, or gestation, at doses up to 500 mcg/kg.

Teratogenicity

There is no evidence from studies in rats and rabbits that Neupogen is teratogenic. An increased incidence of embryo loss has been observed in rabbits, but no malformation has been seen.

6. PHARMACEUTICAL PARTICULARS

6.1 List of excipients

Sodium acetate buffer* (pH 4.0)

Sorbitol

Polysorbate 80

Water for injection.

* Sodium acetate is formed by titrating glacial acetic acid with sodium hydroxide.

6.2 Incompatibilities

Neupogen should not be diluted with saline solutions. If required, Neupogen may be diluted in 5% glucose.

Diluted Neupogen may be adsorbed to glass and plastic materials. However, when diluted in 5% glucose solution, Neupogen is compatible with glass and a variety of plastic including PVC (polyvinyl chloride), polyolefin (a co-polymer of polypropylene and polyethylene) and polypropylene.

Neupogen vials and pre-filled syringes are for single-dose use only.
6.3 Shelf life
30 months.

Chemical and physical in-use stability of the diluted solution for infusion has been demonstrated for 24 hours at 2 to 8°C.

6.4 Special precautions for storage
Neupogen should be stored in a refrigerator at 2 - 8 ºC. Brief accidental exposure to freezing temperatures does not adversely affect the stability of Neupogen.

This medicine should not be used after the expiry date (EXP) shown on the pack.

For storage of diluted solutions, see section 6.

6.5 Nature and contents of container <and special equipment for use, administration or implantation>

Neupogen 300 mcg (30 MU) in 1 mL vials packs of 4 vials/pack
*Neupogen 300 mcg (30 MU) in 0.5 mL pre-filled syringe pack of 1 syringe/pack
*Neupogen 480 mcg (48 MU) in 0.5 mL pre-filled syringe pack of 1 syringe/pack

*Presentation not currently available.

6.6 Special precautions for disposal and other handling
Avoid vigorous shaking.

The solution should be visually inspected prior to use. Only clear solutions without particles should be used.

Neupogen vials and pre-filled syringes are for single use only.

Instructions for Dilution

If required, filgrastim may be diluted in 5% glucose. Dilution to a final concentration less than 5 mcg/ mL is not recommended at any time.

For patients treated with Neupogen diluted to concentrations below 15 mcg/mL, human serum albumin (HSA) should be added to a final concentration of 2 mg/mL.

Example: In a final injection volume of 20 mL, total doses of filgrastim less than 300 mcg should be given with 0.2 mL of 20% human albumin solution (Ph. Eur.).

Diluted Neupogen solutions should not be prepared more than 24 hours before administration and should also be stored refrigerated at 2 - 8 ºC.
Disposal of Medicines

The release of medicines into the environment should be minimised. Medicines should not be disposed of via wastewater and disposal through household waste should be avoided. Unused or expired medicine should be returned to a pharmacy for disposal.

7. MEDICINE SCHEDULE

Prescription Medicine

8. SPONSOR

Amgen New Zealand Limited

Level 22, PwC Tower

15 Customs Street West

Auckland 1010 NEW ZEALAND

Medical Information: 0800 443 885

Email: medinfo.JAPAC@amgen.com

9. DATE OF FIRST APPROVAL

Date of publication in the New Zealand Gazette of consent to distribute the medicine:

Neupogen solution for injection vial 30 May 1991

Neupogen solution for injection pre-filled syringe 3 December 1997

10. DATE OF REVISION OF THE TEXT

30 November 2022

SUMMARY TABLE OF CHANGES

<table>
<thead>
<tr>
<th>Section changed</th>
<th>Summary of new information</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.8</td>
<td>Addition of extramedullary haematopoiesis</td>
</tr>
</tbody>
</table>