NEW ZEALAND DATA SHEET

ADMED LEVETIRACETAM (LEVETIRACETAM) FILM-COATED TABLETS containing 250 mg, 500 mg, 750 mg or 1000 mg levetiracetam per tablet.

1 PRODUCT NAME (strength, pharmaceutical form)

AdMed Levetiracetam film coated tablets containing 250 mg, 500mg, 750 mg or 1000 mg levetiracetam per tablet.

2 QUALITATIVE AND QUANTITATIVE COMPOSITION

AdMed Levetiracetam film-coated tablets are available in strengths of 250 mg, 500 mg, 750 mg and 1000 mg levetiracetam.

It does not contain any excipient with known affect. For the full list of excipients, see Section 6.1 List of excipients.

3 PHARMACEUTICAL FORM

Levetiracetam film coated tablets are available in four different strengths with the following descriptions:

- 250 mg: Blue Coloured, 'Oval' shaped, film coated tablets, embossed with "OL" bisect "250" on one side and plain on other side.
- 500 mg: Yellow Coloured, 'Oval' shaped, film coated tablets, embossed with "OL" bisect "500" on one side and plain on other side.
- 750 mg: Orange Coloured, 'Oval' shaped, film coated tablets, embossed with "OL" bisect "750" on one side and plain on other side.
- 1000 mg: White Coloured, 'Oval' shaped, film coated tablets, embossed with "OL" bisect "1000" on one side and plain on other side.

4 CLINICAL PARTICULARS

4.1 THERAPEUTIC INDICATIONS

Levetiracetam is indicated for:

- use in epileptic patients aged 6 years and older, initially as add-on therapy, inthe treatment of partial onset seizures with or without secondarygeneralisation;
- monotherapy in the treatment of partial onset seizures, with or without secondary

- generalisation, in patients from 16 years of age with newly diagnosed epilepsy;
- add-on therapy in the treatment of myoclonic seizures in adults and adolescents from 12 years of age with juvenile myoclonic epilepsy (JME); and
- add-on therapy in the treatment of primary generalized tonic-clonic seizures inadults and children from 4 years of age with idiopathic generalized epilepsy(IGE).

4.2 DOSE AND METHOD OF ADMINISTRATION

Levetiracetam oral solution is unavailable in this brand, however is available in other brands. Where correct dosing requires levetiracetam oral solution; other suppliers should be used and the specific product information for this formulation should be referred to for the complete dosage and administration instructions.

Levetiracetam therapy can be initiated with either intravenous or oral administration. The total daily dose and frequency of administration should be maintained.

The film-coated tablets must be taken orally and swallowed with liquid.

The film-coated tablets may be taken with or without food.

After oral administration the bitter taste of levetiracetam may be experienced.

The daily dose is administered in two equally divided doses.

Do not halve the tablets. Dose equivalence of halved tablets has not been established.

Monotherapy: -

The recommended starting dose is 250 mg twice daily which should be increased to an initial therapeutic dose of 500 mg twice daily after 2 weeks. The dose can be further increased by 250 mg twice daily every two weeks depending upon the clinical response. The maximum dose is 1500 mg twice daily.

Add-on therapy: -

Adults (≥ 18 years of age) and adolescents (aged 12-17 years of age) weighing 50 kg or more

As adjunctive therapy, the therapeutic dose is 500 mg twice daily which can be started on the first day of treatment. Depending upon the clinical response and tolerance, the daily dose can be increased up to 1500 mg twice daily. Dose changes can be made in 500 mg twice daily increments or decrements every 2 to 4 weeks.

When satisfactory control of seizures has been attained, monotherapy with Levetiracetam may be envisaged by progressively decreasing and withdrawing the concomitant antiepileptic medication.

Elderly (65 years and older)

Adjustment of the dose is recommended in the elderly with compromised renal function

(see Patients with renal impairment below).

Children (aged 6 to 11 years of age) and adolescents (aged 12-17 years of age) weighing less than 50 kg

The initial therapeutic dose is 10 mg/kg twice daily (See Table 1 below). Depending on the clinical response and tolerance, the daily dose can be increased up to 60 mg/kg daily (in two 30 mg/kg doses). Dose changes can be made in 10 mg/kg twice daily dose increments or decrements every two weeks. The lowest effective dose should be used.

The dosage in children 50 kg or greater is the same as in adults.

The physician should prescribe the most appropriate pharmaceutical form and strength according to weight and dose.

Table 1. Recommended dosing in children aged 6 years and older

Weight	Starting dose: 10 mg/kg twice daily	Maximum dose: 30 mg/kg twice daily
25 kg	250 mg twice daily	750 mg twice daily
From 50 kg ⁽¹⁾	500 mg twice daily	1500 mg twice daily

 $^{^{\}rm (1)}$ Dosage in children and adolescents weighing 50 kg or more is the same as in adults.

Infants and children less than 6 years of age

There are insufficient data to recommend the use of Levetiracetam in children under 6 years of age.

Patients with renal impairment

The daily dose for Levetiracetam must be individualised according to renal function. Refer to Table 2 for adult patient and adjust the dose as indicated.

To use this dosing table, an estimate of the patient's creatinine clearance (CLcr) in mL/min is needed. The CLcr in mL/min may be estimated from serum creatinine (micromol/L) determination using the following formula:

Then CLcr is adjusted for body surface area (BSA) as follows:

CLcr(mL/min/1.73m²)= $\frac{\text{CLcr(mL/min)} \times 1.73}{\text{BSA Subject (m}^2)}$

Table 2. Adult dosage schedule based on renal function.

Group	Creatinine clearance (mL/min/1.73m²)	Dosage (mg)	Frequency (daily)
Normal	≥80	500 to 1500	Twice
Mild	50-79	500 to 1000	Twice
Moderate	30-49	250 to 750	Twice
Severe	< 30	250 to 500	Twice
End-stage renal disease patients undergoing dialysis	-	500 to 1000	Once (2)

 $^{^{(1)}}$ A 750 mg loading dose is recommended on the first day of treatment with Levetiracetam.

For children with renal impairment, Levetiracetam dose needs to be adjusted based on the renal function as Levetiracetam clearance is related to renal function. This recommendation is based on a study in adult renally impaired patients.

Patients with hepatic impairment

No dose adjustment is needed in patients with mild and moderate hepatic impairment.

In patients with severe hepatic impairment, the creatinine clearance may underestimate the renal insufficiency. Therefore, a 50% reduction of the daily maintenance dose is recommended when the creatinine clearance is $< 60 \text{ mL/min/1.73 m}^2$.

4.3 CONTRAINDICATIONS

Hypersensitivity to Levetiracetam or other pyrrolidone derivatives or any of the excipients (see Section 6.1 List of Excipients).

4.4 SPECIAL WARNINGS AND PRECAUTIONS FOR USE

Identified precautions

In accordance with current clinical practice, if Levetiracetam has to be discontinued, it is recommended to withdraw it gradually.

Due to its complete and linear absorption, plasma levels can be predicted from the oral dose of levetiracetam expressed as mg/kg bodyweight. Therefore, monitoring of Levetiracetam in the plasma level is not required.

There is no data available on the interaction of Levetiracetam with alcohol.

Suicidal behavior and ideation

⁽²⁾ Following dialysis, a 250 to 500 mg supplemental dose is recommended.

Antiepileptic drugs, including Levetiracetam, increase the risk of suicidal thoughts or behavior in patients taking these drugs for any indication. Patients treated with any AED for any indication should be monitored for the emergence or worsening of depression, suicidal thoughts or behavior, and/or any unusual changes in mood orbehaviour.

Pooled analyses of 199 placebo controlled clinical trials (mono- and adjunctive therapy) of 11 different AEDs showed that patients randomized to one of the AEDs had approximately twice the risk (adjusted relative risk 1.8, 95% CI:1.2, 2.7) of suicidal thinking or behavior compared to patients randomised to placebo. In these trials, which had a median treatment duration of 12 weeks, the estimated incidence rate of suicidal behaviour or ideation among 27,863 AED treated patients was 0.43%, compared to 0.24% among 16,029 placebo treated patients, representing an increase of approximately one case of suicidal thinking or behaviour for every 530 patients treated. There were four suicides in drug treated patients in the trials and none in placebo treated patients, but the number is too small to allow any conclusion about the drug effect on suicide.

The increased risk of suicidal thoughts or behavior with AEDs was observed as early as one week after starting the drug treatment with AEDs and persisted for the duration of treatment assessed. As most trials included in the analysis did not extend beyond 24 weeks, the risk of suicidal thoughts or behavior beyond 24 weeks could not beassessed.

The risk of suicidal thoughts or behavior was generally consistent among drugs in the data analysed. The finding of increased risk with AEDs of varying mechanisms of action and across a range of indications suggest that the risk applies to all AEDs used for any indication. The risk did not vary substantially by age (5-100 years) in the clinical trials analysed. Table 3 shows absolute and relative risk by indication for all evaluated AEDs.

Table 3. Risk by indication for antiepileptic drugs in the pooled analysis

Indication	Placebo patients with events/1000 patients	Drug patients with events/1000 patients	Relative Risk: Incidence of events in Drug patients/incidence in Placebo patients	Risk Difference: Additional Drug patients with events per 1000 patients
Epilepsy	1.0	3.4	3.5	2.4
Psychiatric	5.7	8.5	1.5	2.9
Other	1.0	1.8	1.9	0.9
Total	2.4	4.3	1.8	1.9

The relative risk for suicidal thoughts or behavior was higher in clinical trials for epilepsy than in clinical trials for psychiatric or other conditions, but the absolute risk differences were similar for the epilepsy and psychiatric indications.

Anyone considering prescribing Levetiracetam or any other AED must balance this risk with the risk of untreated illness. Epilepsy and many other illnesses for which AEDs are prescribed are themselves associated with morbidity and mortality and an increased risk of suicidal thoughts and behavior. Should suicidal thoughts and behavior emerge during treatment, the prescriber needs to consider whether the emergence of these symptoms in any given patient may be related to the illness being treated.

Patients, their caregivers, and families should be informed that AEDs increase the risk of suicidal thoughts and behavior and should be advised of the need to be alert for the emergence of worsening of the signs and symptoms of depression; any unusual changes in mood or behavior; or the emergence of suicidal thoughts, behavior, or thoughts about self-harm. Behaviours of concern should be reported immediately to the treating doctor.

Blood cell count

Cases of decreased blood cell counts (neutropenia, agranulocytosis, leucopenia, thrombocytopenia and pancytopenia) have been described in association with Levetiracetam administration. Complete blood cell counts are advised in patients experiencing important weakness, pyrexia, recurrent infections or coagulation disorders [See Section 4.8 Adverse effects (undesirable effects)].

Use in hepatic impairment

See section 4.2 Dose and Method of Administration and Section 5.3 Pharmacokinetic Properties.

Use in renal impairment

The administration of Levetiracetam to patients with renal impairment may require dose adaptation. Monitoring of renal function in severe hepatic impaired patients is recommended before dose selection (see Section 4.2 Dose and Method of Administration).

Use in the elderly

See section 4.2 Dose and Method of Administration and Section 5.3 Pharmacokinetic Properties.

Paediatric use

To date, there are no data to support the use of Levetiracetam in patients less than 6 years of age.

Effects on laboratory tests

No data available.

4.5 INTERACTIONS WITH OTHER MEDICINES AND OTHER FORMS OF INTERACTIONS

In vitro, Levetiracetam and its major metabolite (ucb L057) have been shown not to inhibit the major human liver cytochrome P450 isoforms, glucuronyl transferase, (valproic acid) and epoxide hydroxylase activities. In human hepatocytes in culture, Levetiracetam did not cause enzyme induction.

Probenecid (500 mg four times daily) has been shown to inhibit the renal clearance of the major metabolite (ucb L057) but not Levetiracetam. Nevertheless, the concentration of ucb L057 remains low. It is expected that other drugs excreted by active tubular secretion could also reduce the renal clearance of the metabolite. The effect of Levetiracetam on probenecid was not studied and the effect of levetiracetam on other actively secreted drugs, e.g. NSAIDs, sulphonamides, and methotrexate is unknown.

Premarketing data from clinical studies conducted in adults indicate that Levetiracetam did not influence the serum concentrations of existing antiepileptic medicinal products (phenytoin, carbamazepine, valproic acid, phenobarbital, lamotrigine, gabapentin and primidone). These antiepileptic medicinal products did not influence the pharmacokinetics of Levetiracetam.

Consistent with formal pharmacokinetic studies in adults, there has been no clear evidence of clinically significant drug interactions in paediatric patients receiving up to 60mg/kg/day A retrospective assessment of pharmacokinetic interactions in children and adolescents with epilepsy (4 to 17 years) confirmed that adjunctive therapy with Levetiracetam did not influence the steady-state serum concentrations of concomitantly administered carbamazepine, valproate, topiramate and lamotrigine. However, data suggested that enzyme inducing antiepileptic medicinal products increase Levetiracetam clearance by 22%. Thus, dosage adjustment is not required.

Pharmacokinetic studies also demonstrated a lack of interaction with digoxin, oral contraceptives (ethinylestradiol and levonorgestrel) and warfarin. Endocrine parameters (LH and progesterone) and prothrombin times were not modified.

No data on the influence of antacids on the absorption of Levetiracetam are available.

4.6 FERTILITY, PREGNANCY AND LACTATION

Effects on fertility

There are no human data on the effects of Levetiracetam on male or female fertility. No adverse effects on male or female fertility or reproductive performance were observed in rats at oral doses of Levetiracetam up to 1800 mg/kg/day (corresponding to approximately 6 times the maximal recommended clinical dose on a mg/m 2 basis) administered for at least two weeks prior to, and throughout, mating.

Use in pregnancy – Pregnancy Category B3

In rats and rabbits, Levetiracetam and/or its metabolites cross the placenta and the foetal levels approximate to maternal plasma levels. In these species, Levetiracetam produced evidence of developmental toxicity at doses similar to or greater than human therapeutic doses.

Oral administration to female rats from two weeks prior to mating and throughout pregnancy and lactation was associated with increased incidences of minor foetal skeletal abnormalities and retarded offspring growth prenatally and/or postnatally at doses \geq 350 mg/kg/day (approximately equivalent to the maximal recommended clinical dose of 3000 mg/day on a mg/m² basis) and with increased pup mortality and offspring behavioural alterations at a dose of 1800 mg/kg/day (6 times the maximal human dose on a mg/m² basis). The developmental no effect dose was 70 mg/kg/day (equivalent to 0.2 times the maximal human dose on a mg/m² basis). There was no overt maternal toxicity at the doses used in thisstudy.

Oral administration to pregnant rabbits during the period of organogenesis resulted in increased embryofoetal mortality and increased incidences of minor foetal skeletal abnormalities at doses \geq 600 mg/kg/day (about 4 times the maximal human dose on a mg/m² basis) and in decreased foetal weights and increased incidences of minor foetal skeletal anomalies at a dose of 1800 mg/kg/day (12 times the maximal human dose on a mg/m² basis). The developmental no effect dose was 200 mg/kg/day (1.3 times the maximal human dose on a mg/m² basis). Maternal toxicity was also observed at 1800 mg/kg/day.

Oral administration to pregnant rats during the period of organogenesis resulted in reduced foetal weight and increased incidence of embryofoetal mortality and increased incidence of foetal skeletal variations at a dose of 3600 mg/kg/day (12 times the maximal human dose on a mg/m² basis). The developmental no effect dose was 1200 mg/kg/day (4 times the maximal human dose on a mg/m² basis). There was no overt maternal toxicity.

Oral administration to rats during the late gestation and throughout lactation produced no

adverse developmental or maternal effects at doses of up to 1800 mg/kg/day (6 times the maximal human dose on a mg/m² basis).

Neonatal and juvenile animal studies in rats and dogs demonstrated that there were no adverse effects seen in any of the standard developmental or maturation endpoints at doses of up to 1800 mg/kg/day corresponding to 30 times the maximum recommended human dose.

Therefore, the risk of having an abnormal child as a result of antiepileptic medication is far outweighed by the dangers to the mother and foetus of uncontrolled epilepsy.

It is recommended that:

- women on antiepileptic drugs (AEDs) receive prepregnancy counselling with regard to the risk of foetal abnormalities;
- AEDs should be continued during pregnancy and monotherapy should be usedif
 possible at the lowest effective dose as risk of abnormality is greater in women
 taking combined medication;
- folic acid supplementation (5 mg) should be commenced four weeks prior to and continue for twelve weeks after conception;
- specialist prenatal diagnosis including detailed mid trimester ultrasound should be offered.

A large amount of post marketing data on pregnant women (more than 1800 exposed monotherapy and 1200 polytherapy outcomes) do not indicate increased risk of major malformations or other adverse pregnancy outcomes in women with epilepsy treated with Levetiracetam.

Generally, therapy with multiple antiepileptic drugs (including polytherapy containing Levetiracetam) is associated with a higher risk of major malformations than monotherapy.

Levetiracetam should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus. As with other antiepileptic drugs, physiological changes during pregnancy may affect Levetiracetam concentration. There have been reports of decreased Levetiracetam concentrations during pregnancy. This decrease is more pronounced during the third trimester (up to 60% of baseline concentration before pregnancy).

Use in lactation.

Levetiracetam and/or its metabolites are excreted in milk in lactating rats. Peak milk concentrations occurred 3 hours after oral administration (milk: plasma ratio 0.9).

Levetiracetam is excreted in human breast milk. As there is a potential for serious adverse reactions in breastfeeding infants from Levetiracetam, a decision should be made whetherto discontinue breastfeeding or to discontinue the drug after taking into account the importance of the drug to the mother.

4.7 EFFECTS ON ABILITY TO DRIVE AND USE MACHINES

No studies on the effects of the ability to drive and use machines have been performed. Due to possible different individual sensitivity, some patients might experience, at the beginning of treatment or following a dosage increase, somnolence or other CNS related symptoms. Therefore, caution is recommended in those patients when performing skilled tasks, e.g. driving vehicles, or operating machinery.

4.8 ADVERSE EFFECTS (UNDESIRABLE EFFECTS)

The prescriber should be aware that following data were obtained from studies where Levetiracetam was added to concomitant antiepileptic therapy. Therefore it was not possible in all cases to determine which agent(s), if any, was associated with adverse events. It is also difficult to predict the frequency of adverse events in the course of usual medical practice where patient characteristics and other factors may differ from those prevailing during clinical studies.

Adult patients

Levetiracetam has been administered to more than 3000 subjects and patients. Of these, 780 patients were treated for more than 6 months, 592 for more than 1 year, 366 for more than 2 years and 185 for more than 3 years.

1023 adult patients with epilepsy participated in controlled clinical trials (672 patients were treated with Levetiracetam and 351 patients with placebo).

From placebo controlled studies conducted in adults, 46.4% and 42.2% of patients experienced drug related treatment emergent adverse events in the Levetiracetam group and placebo group, respectively. 2.4% and 2.0% of patients experienced serious drug related treatment emergent adverse events in the Levetiracetam group and placebo group, respectively.

During monotherapy treatment with Levetiracetam, 79.6% of subjects experienced at least one adverse event and 49.8% experienced at least one drug related undesirable effect. The most frequently reported adverse effects were fatigue and somnolence.

Very common adverse events (≥ 10%)

The very common adverse events (≥ 10%) were somnolence, asthenia, infection, headache and accidental injury. Of these, somnolence, asthenia and infection appeared to occur more frequently in Levetiracetam treated patients than in placebo treated patients, whereas accidental injury was more common in the placebo group and headache was similarly reported in the two groups. (See Table 4).

Table 4: Incidence (%) of very common treatment-emergent adverse events in adult placebo controlled studies, by body system

Body System / Adverse Event	Levetiracetam group (N=672)	Placebo group (N=351)
	%	%
Body as a Whole		
Accidental Injury	10.3	16.5
Asthenia	14.1	9.7
Headache	13.1	13.7
Infection	13.2	7.4
Nervous System		

AdMed Levetiracetam Tablets version: 3.0

Somnolence 14.9 9.7	Somnolence		197
---------------------	------------	--	-----

In the pooled safety analysis, there was no clear dose response relationship but incidence and severity of CNS related undesirable effects decreased overtime.

More than 93% of events categorised under the COSTART preferred term infection are symptoms of community acquired infections (common cold and upper respiratory tract infections). There was no increase in incidence of other infections (lower respiratory tract infections, urinary tract infections, etc.). Minor, but statistically significant, decreases compared to placebo in total mean RBC count ($0.03 \times 10^6/\text{mm}^2$), mean haemoglobin (0.9 g/L), and mean haematocrit (0.38%) were seen in Levetiracetam treated patients in controlled trials. A total of 3.2% of treated and 1.8% of placebo patients had at least one possibly significant ($\le 2.8 \times 10^9/\text{L}$) decreased WBC, and 2.4% for treated and 1.4% of placebo patients had at least one possible significant ($\le 1.0 \times 10^9/\text{L}$) decreased neutrophil count. Of the treated patients with a low neutrophil count, all but one rose towards or to baseline with continued treatment. No patient was discontinued secondary to low neutrophilcounts.

Common adverse events (≥ 1%, < 10%) See Table 5.

Table 5. Incidence (%) of common treatment-emergent adverse events in adult placebo controlled studies, by body system

Body System / Adverse Event	Levetiracetam group (N=672) %	Placebo group (N=351) %	
BODY AS A WHOLE	70	76	
Abdominal Pain	3.7	5.1	
Back Pain	4.0	4.6	
Chest Pain	1.3	1.1	
Drug Level Increased	1.3	0.9	
Fever	1.3	1.7	
Flu Syndrome	4.2	6.0	
Hostility	2.1	0.6	
Pain	6.5	6.6	
DIGESTIVE SYSTEM			
Anorexia	2.4	2.0	
Diarrhoea	4.2	5.1	
Dyspepsia	2.8	3.4	
Gastroenteritis	1.2	0.9	
Gingivitis	1.2	0.6	
Nausea	4.2	4.6	
Tooth Disorder	1.5	0.6	
Vomiting	2.2	2.0	
HAEMIC AND LYMPH SYSTEM			

Ecchymosis	1.5	1.1			
METABOLIC / NUTR DIS					
Weight gain	1.2	1.1			
NERVOUS SYSTEM					
Amnesia	1.6	0.3			
Anxiety	1.6	1.1			
Ataxia	2.5	1.4			
Convulsion	6.0	6.8			
Depression	4.0	2.3			
Dizziness	9.2	4.3			
Emotional Lability	1.6	0.3			
Insomnia	3.0	2.8			
Nervousness	3.9	1.7			
Paraesthesia	1.9	1.7			
Г					
Thinking abnormal	1.5	1.4			
Tremor	1.5	1.7			
Vertigo	2.5	1.4			
RESPIRATORY SYSTEM					
Bronchitis	1.3	1.4			
Cough Increased	2.1	1.7			
Pharyngitis	5.7	3.7			
Rhinitis	4.3	2.6			
Sinusitis	2.1	0.9			
SKIN AND APPENDAGES					
Rash	2.8	4.0			
SPECIAL SENSES					
Amblyopia	1.2	1.4			
Diplopia	2.4	1.7			
Otitis media	1.2	0.9			
UROGENITAL SYSTEM					
Urinary Tract Infection	1.9	3.4			

The incidence of serious adverse events in placebo controlled studies was 9.9% in the Levetiracetam group versus 8.9% in the placebo group. Many of the serious adverse events are typical for a population of patients with epilepsy.

The serious adverse events which occurred in more than 1% of patients were convulsion (1.8% in Levetiracetam group versus 1.4% in placebo group) and accidental injury (1.6% in both Levetiracetam and placebo group).

Paediatric patients

A study conducted in paediatric patients (4 to 16 years of age) showed that 55.4% and 40.2% of the paediatric patients experienced undesirable effects in the Levetiracetam and placebo groups, respectively, and that 0.0% and 1.0% of the paediatric patients experienced serious undesirable effects in the Levetiracetam and placebo groups, respectively. In the paediatric clinical study, 16.8% of patients receiving Levetiracetam and 20.6% receiving placebo either discontinued or had a dose reduction as a result of an adverse event. The most commonly reported undesirable effects in the paediatric population were somnolence, hostility, nervousness, emotional lability, agitation, anorexia, asthenia and headache.

Safety results in paediatric patients were consistent with the safety profile of Levetiracetam in adults, except for behavioural and psychiatric undesirable effects which were more common in children than in adults (38.6% versus 18.6%). However, the relative risk was similar in children as compared to adults as there was also a higher incidence of behavioural psychiatric adverse events in the placebo group in children as compared to adults (27.8% versus 10.5%). (See Table 6).

Table 6. Incidence (%) of treatment-emergent adverse events in a placebo-controlled, addon study in paediatric patients aged 4-16 years, by body system (adverse events occurred in at least 2% of Levetiracetam-treated patients and occurred more frequently than placebo-treated patients)

Body System / Adverse	LEVETIRACETAM group	Placebo group (N=97)		
Event	(N=101)			
	%	%		
BODY AS A WHOLE				
Accidental Injury	17	10		
Asthenia	9	3		
Pain	6	3		
Flu Syndrome	3	2		
Face Oedema	2	1		
Neck Pain	2	1		
Viral Infection	2	1		
DIGESTIVE SYSTEM				
Vomiting	15	13		
Anorexia	13	8		
Diarrhoea	8	7		
Gastroenteritis	4	2		
Constipation	3	1		
HAEMIC AND LYMPH SYSTEM				
Ecchymosis	4	1		
METABOLIC / NUTR DIS				

Dehydration	2	1
NERVOUS SYSTEM		
Somnolence	23	11
Hostility	12	6
Nervousness	10	2
Personality Disorder	8	7
Dizziness	7	2
Emotional Lability	6	4
Agitation	6	1
Depression	3	1
Vertigo	3	1
Reflexes Increased	2	1
Confusion	2	0

RESPIRATORY SYSTEM			
Rhinitis	13	8	
Cough Increased	11	7	
Pharyngitis	10	8	
Asthma	2	1	
CWN AND ADDENDAGE			
SKIN AND APPENDAGES			
Pruritis	2	0	
Skin Discolouration	2	0	
Vesiculobullous Rash	2	0	
SPECIAL SENSES			
Conjunctivitis	3	2	
Amblyopia	2	0	
Ear Pain	2	0	
UROGENITAL SYSTEM			
Albuminuria	4	0	
Urine Abnormality	2	1	

Other events occurring in 2% or more of paediatric patients treated with Levetiracetam but as or more frequent in the placebo group were the following: abdominal pain, allergic reaction, ataxia, convulsion, epistaxis, fever, headache, hyperkinesia, infection, insomnia, nausea, otitis media, rash, sinusitis, status epilepticus (not otherwise specified), thinking abnormal,tremor, and urinary incontinence.

Other controlled clinical trials

The following adverse effects, listed by body system, have been observed in additional controlled clinical trials.

General disorders: Very common: fatigue.

Respiratory system: Common: nasopharyngitis.

AdMed Levetiracetam Tablets version: 3.0

Nervous system: Common: balance disorder, disturbance in attention, memory impairment.

Skin and subcutaneous tissue disorders: Common: eczema, pruritus.

Eve disorders: Common: vision blurred.

Blood and lymphatic system disorders: Common: thrombocytopenia.

Musculoskeletal and connective tissue disorders: Common: myalgia.

Psychiatric disorders: Common: irritability, mood swings, personality disorder

Post marketing experience

In post marketing experience, nervous system and psychiatric disorders have been most frequently reported.

In addition to the adverse reactions reported during clinical studies and listed above, the following adverse reactions have been reported in post marketing experience. Data are insufficient to support an estimate of their incidence in the population to be treated: -

Blood and lymphatic system disorders: Pancytopenia with bone marrow suppression identified in some of these cases, agranulocytosis, leucopenia and neutropenia.

Immune system disorders: Anaphylaxis, drug reaction with eosinophilia and systemic symptoms (DRESS).

Psychiatric disorders: Abnormal behaviour, aggression, anger, panic attack, confusion, hallucination, psychotic disorder, suicide, suicide attempt, suicidal ideation and delirium.

Nervous system disorders: Choreoathetosis, dyskinesia, lethargy, gait disturbance.

Skin and subcutaneous tissue disorders: Toxic epidermal necrolysis, Stevens-Johnson syndrome, angioedema, erythema multiforme and alopecia; in several alopecia cases, recovery was observed when Levetiracetam was discontinued.

Musculoskeletal and connective tissue disorders: Muscular weakness, rhabdomyolysis and blood creatine phosphokinase increased.

Liver and biliary system disorders: Hepatitis, hepatic failure and abnormal liver function test.

Renal and urinary disorders: Acute kidney injury.

Metabolic and nutritional disorders: Weight loss, pancreatitis, hyponatraemia

Description of selected adverse reactions

The prevalence of rhabdomyolysis and blood creatine phosphokinase increase is significantly higher in Japanese patients compared to non-Japanese patients.

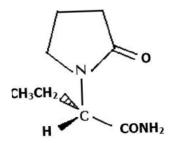
Reporting of suspected adverse reactions

Reporting suspected adverse reactions after authorisation of the medicine is important. It allows continued benefit/risk monitoring of the balance of the medicine. Healthcare professionals asked report suspected adverse are to any reactions https://nzphvc.otago.ac.nz/reporting/.

4.9 OVERDOSE

The highest known dose of Levetiracetam received in the clinical development program was 6000 mg/day. Other than drowsiness, there were no adverse events in the few known cases of overdose in clinical trials. Cases of somnolence, agitation, aggression, depressed level of consciousness, respiratory depression and coma were observed with Levetiracetam overdoses in post marketing use.

There is no specific antidote for Levetiracetam. Treatment for an overdose will be symptomatic and may include haemodialysis. The dialyser extraction efficiency is 60% for Levetiracetam and 74% for the major metabolite (ucb L057).


For advice on the management of overdose, please contact the National Poisons Centre on 0800 POISON (0800 764766).

5 PHARMACOLOGICAL PROPERTIES

5.1 PHARMACODYNAMIC PROPERTIES

Levetiracetam is a white to off-white powder with a faint odour and a bitter taste. It is very soluble in water (104 g/100 mL). It is freely soluble in chloroform (65.3 g/100 mL) and in methanol (53.6 g/100 mL), soluble in ethanol (16.5 g/ 100mL), sparingly soluble in acetonitrile (5.7 g/100 mL) and practically insoluble in n-hexane.

Chemical structure:

Chemical name: (S)- α -ethyl-2-oxo-1-pyrrolidineacetamide.

Molecular formula: C8H14N2O2.

CAS number: 102767-28-2

Mechanism of action

The precise mechanism of action by which Levetiracetam induces seizure protection still remains to be fully elucidated but appears to be unrelated to the mechanisms of current antiepileptic drugs. In vitro and in vivo experiments suggest that Levetiracetam does not alter basic cell characteristics and normal neurotransmission.

In vitro studies show that Levetiracetam affects intraneuronal Ca2+ levels by partial inhibition of N-type Ca2+ currents and by reducing the release of Ca2+ from intraneuronal stores. In addition, it partially reverses the reductions in GABA and glycine-gated currents induced by β -carbolines. Levetiracetam has shown in *In vitro* studies to bind to a specific site in rodent brain tissue. This binding site is the synaptic vesicle protein 2A, believed to be involved in vesicle fusion and neurotransmitter exocytosis. Levetiracetam and related analogues show a rank order of affinity for binding to the synaptic vesicle protein 2A which correlates with the potency of their antiseizure protection in the mouse audiogenic model of epilepsy. This finding suggests that the interaction between Levetiracetam and the synaptic vesicle protein 2A seems to contribute to the antiepileptic mechanism of action of the drug.

Pharmacodynamics

In animals

Levetiracetam is not active in the classical screening models for anticonvulsants however induces potent protection in a broad range of animal models of partial and primary generalised seizures, with an unusually high safety margin between therapeutic doses and doses inducing adverse effects.

Levetiracetam also displays potential antiepileptogenic properties by dose dependently inhibiting the development of kindling, even after discontinuation of the active substance.

Withdrawal from chronic treatment did not decrease the seizure threshold. Anxiolytic action and an absence of undesirable effects on cognitive function have also been observed.

The major metabolite, ucb L057, is inactive in seizure models.

In man

Both partial and generalised epilepsy models (epileptiform discharge/ photoparoxysmal response) confirmed the broad spectrum preclinical pharmacological profile.

Clinical trials: -

Effectiveness in partial onset seizures in adults and adolescents

Monotherapy

The monotherapy study was designed as a double blind, parallel group, noninferiority comparison of Levetiracetam and carbamazepine controlled released in patients 16 years of age or older with newly diagnosed epilepsy. The seizures were to be either unprovoked partial seizures type (IA (simple partial seizures with unimpaired consciousness), IB (complex partial seizures with impaired consciousness), or IC (partial seizures secondarily generalised (with clear focal origin)) or IIE (generalised tonic-clonic seizure (without clear

focal origin)), classifiable according to the International Classification of Epileptic Seizures. The study was performed in 85 centers in 13 countries (Europe and South Africa).

At the end of the 1 week screening period, eligible subjects were stratified by seizure type (IA/IB/IC or IC/IIE without clear focal origin) and randomly assigned to receive CBZ CR (N = 291) or LEV (N= 285), for up to 121 weeks depending on response. Conservatively, a controlled release (CR) formulation of carbamazepine was used to minimise adverse effects. The maximal duration for an individual subject was 121 weeks.

After a 1 week screening period (no study drug intake), the subject was randomized and entered a 2 week up titration period to the first target daily dose (LEV 1000 mg/CBZ 400 mg), followed by a one-week stabilization period and an evaluation period of 26 weeks in order to achieve a 6month seizure freedom (primary efficacy endpoint), and followed by a maintenance period of 26 additional weeks in order to assess safety and maintenance of efficacy. If a seizure occurred during the evaluation period, dose escalation (made over a 2 week period) to the second target daily dose (LEV 2000 mg/CBZ 800 mg) was foreseen. This was followed by a 1 week stabilization period, a new evaluation period of 26 weeks and a maintenance period of 26 additional weeks. The same was true if a seizure occurred during the evaluation period at the second dose level: dose escalation (made over a 2 weekperiod) to the third target daily dose (LEV 3000 mg/CBZ 1200 mg), followed by a one week stabilization period, a new evaluation period of 26 weeks and a maintenance period of 26 additional weeks. Fallback option: in case a subject did not tolerate the second or third study drug target dose, he/she had the opportunity, during the evaluation or the maintenance period, to have one fallback to an intermediate dose (decrease by 200 mg/day for CBZ or by 500 mg/day for LEV) and to continue in the trial on that basis. The subject could not resume the previous dose and could not have further up-titration in case a new seizure occurred.

576 subjects were randomised. Approximately one half of the patients in each treatment group completed the study (53.6% of the patients randomised to CBZ and 54.0% of the patients randomized to LEV), similar between the two treatment groups. The distribution by seizure type categories was similar in both treatment groups, with around 86.7% of subjects lastly classified as experiencing partial seizures with clear focus origin. The majority of subjects remained at dose level 1 (81.7% of subjects randomised to CBZ and 73.4% of subjects randomised to LEV in the PP population).

The prospectively defined primary endpoint was the proportion of subjects from the PP population with 6 month seizure freedom at the last evaluated dose.

One hundred seventy three (73.0%) of the PP subjects in the LEV arm were seizure free for at least 6 months at the last evaluated dose, compared to 171 subjects (72.8%) in the CBZ arm. The adjusted absolute difference LEV and CBZ (95% two sided CI) obtained from a logistic regression model including a factor for the seizure type category as last assessed (IA/IB/IC versus IC/IIE) equaled 0.2% (-7.8%; 8.2%).

The lower limit of the confidence interval (-7.8%) was above the noninferiority limit set by protocol (-15%) for this primary efficacy analysis, and therefore LEV can be considered as noninferior to CBZ on the proportion of subjects seizure free at least 6 months at the first evaluated dose in the PP population. Considering the other clinically relevant end point, 56.6% and 58.5% of subjects on LEV and CBZ respectively were seizure free for 1 year.

Add-on therapy

The effectiveness of Levetiracetam tablets as adjunctive therapy (added to other antiepileptic drugs) in adults was established in three multicentre, randomised, double blind, placebo controlled clinical studies in patients who had refractory partial onset seizures with or without secondary generalisation. In these studies, 904 patients were randomised to placebo, 1000 mg, 2000 mg or 3000 mg/day. Patients enrolled in Study 1 or Study 2 had refractory partial onset seizures for at least 2 years and had taken two or more classical AEDs. Patients enrolled in Study 3 had refractory partial onset seizures for at least 1 year and had taken one classical AED. At the time of the study, patients were taking a stable dose regimen of at least one and could take a maximum of two AEDs. During the baseline period, patients had to have experienced at least two partial onset seizures during each 4 weekperiod.

Study 1: Study 1 was a double blind, placebo controlled, parallel group study conducted at 41 sites in the United States comparing Levetiracetam 1000 mg/day (N = 97), Levetiracetam 3000 mg/day (N = 101) and placebo (N = 95) given in equally divided doses twice daily. After a prospective baseline period of 12 weeks, patients were randomised to one of the three treatment groups described above. The 18 week treatment period consisted of a 6 week titration period, followed by a 12 week fixed dose evaluation period, during which concomitant AED regimens were held constant. The primary measure of effectiveness was between a group comparison of the percent reduction in weekly partial seizure frequency relative to placebo over the entire randomised treatment period (titration + evaluation period). Secondary outcome variables included the responder rate (incidence of patients with \geq 50% reduction from baseline in partial onset seizure frequency). The results of the analysis of study 1 are displayed in Table 7.

Table 7. Reduction in mean over placebo in weekly frequency of partial onset seizures in Study 1.

	Placebo (N=95)	Levetiracetam 1000 mg/day (N=97)	Levetiracetam 3000 mg/day (N=101)
Percent reduction in partial seizure frequency over placebo	-	26.1% P<0.001	30.1% P<0.001

The percentage of patients (y-axis) who achieved \geq 50% reduction in weekly seizure rates from baseline in partial onset seizure frequency over the entire randomised treatment period (titration + evaluation period) within the three treatment groups (x-axis) is presented in Figure 1.

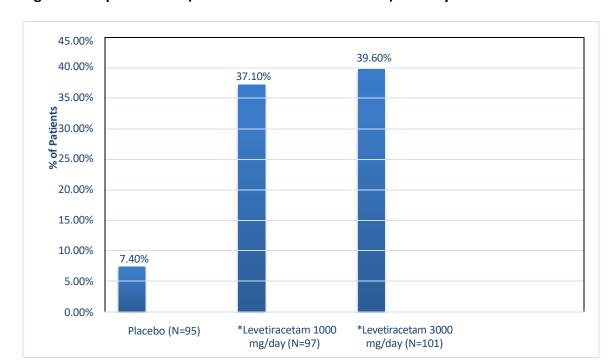
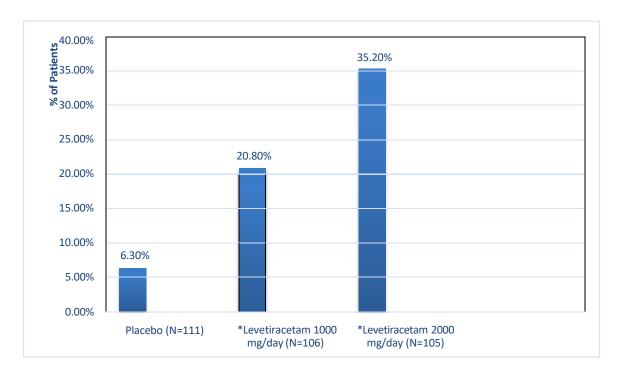


Figure 1. Responder rate (≥50% reduction from baseline) in Study 1.

Study 2: Study 2 was a double blind, placebo controlled, crossover study conducted at 62 centres in Europe comparing Levetiracetam 1000 mg/day (N = 106), Levetiracetam 2000 mg/day (N = 105) and placebo (N = 111) given in equally divided doses twice daily.

The first period of the study (period A) was designed to be analysed as a parallel group study. After a prospective baseline period of up to 12 weeks, patients were randomised to one of the three treatment groups described above. The 16 week treatment period consisted of the 4 week titration period followed by a 12 week fixed dose evaluation period, during which concomitant AED regimens were held constant. The primary measure of effectiveness was between group comparison of the percent reduction in weekly partial seizure frequency relative to placebo over the entire randomised treatment period (titration + evaluation period). Secondary outcome variables included the responder rate (incidence of patients with ≥ 50% reduction from baseline in partial onset seizure frequency). The results of theanalysis of period A are displayed in Table 8.

Table 8. Reduction in mean over placebo in weekly frequency of partial onset seizures in Study 2 – Period A


Placebo (N=111)	Levetiracetam 1000 mg/day (N=106)	Levetiracetam 2000 mg/day (N=105)

^{*}P<0.001 versus placebo

Percent reduction in partial	-	17.1%	21.4%
seizure frequency over		P≤0.001	P≤0.001
placebo			

The percentage of patients (y-axis) who achieved \geq 50% reduction in weekly seizure rates from baseline in partial onset seizure frequency over the entire randomised treatment period (titration + evaluation period) within the three treatment groups (x-axis) is presented in Figure 2.

Figure 2. Responder rate (≥50% reduction from baseline) in Study 2 – Period A

^{*}P<0.001 versus placebo

The comparison of Levetiracetam 2000 mg/day to Levetiracetam 1000 mg/day for responder rate was statistically significant (P = 0.02). Analysis of the trial as a crossover yielded similar results.

Study 3: Study 3 was a double blind, placebo controlled, parallel group study conducted at 47 centres in Europe comparing Levetiracetam 3000 mg/day (N = 180) and placebo (N = 104) in patients with refractory partial onset seizures, with or without secondary generalisation, receiving only one concomitant AED. Study drug was given in two divided doses. After a prospective baseline period of 12 weeks, patients were randomised to one of two treatment groups described above. The 16 week treatment period consisted of a 4 week titration period, followed by a 12 week fixed dose evaluation period, during which concomitant AED doses were held constant. The primary measure of effectiveness was a between group comparison of the percent reduction in weekly seizure frequency relative to placebo over the

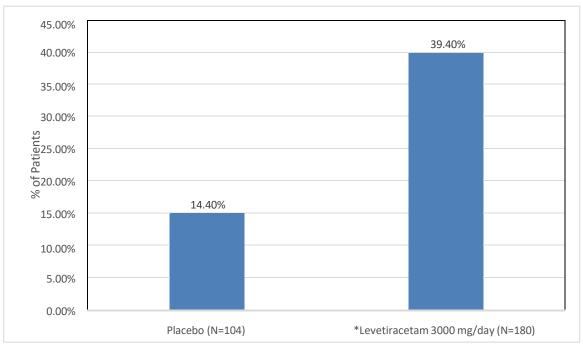

entire randomised treatment period (titration + evaluation period). Secondary outcome variables included the responder rate (incidence of patients with \geq 50% reduction from baseline in partial onset seizure frequency). Table 9 displays the results of the analysis of study 3.

Table 9. Reduction in mean over placebo in weekly frequency of partial onset seizures in Study 3

	Placebo (N=104)	Levetiracetam 3000 mg/day (N=180)
Percent reduction in partial seizure frequency over placebo	-	23.0% P<0.001

The percentage of patients (y-axis) who achieved $\geq 50\%$ reduction in weekly seizure rates from baseline in partial onset seizure frequency over the entire randomised treatment period (titration + evaluation period) within the two treatment groups (x-axis) is presented in Figure 3.

Figure 3. Responder rate (≥50% reduction from baseline) in Study 3

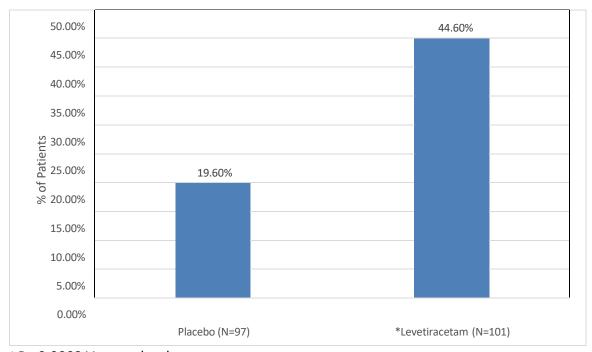
^{*}P<0.001 versus placebo

Effectiveness in partial onset seizures in paediatric patients with epilepsy

The effectiveness of Levetiracetam as adjunctive therapy (added to other antiepileptic drugs) in paediatric patients was established in a multicenter, randomised double blind, placebo controlled study, conducted at 60 sites in North America, in children 4 to 16 years of age with partial seizures uncontrolled by standard antiepileptic drugs (AEDs). Eligible patients on a steady dose of 1-2 AEDs, who still experienced at least 4 partial onset seizures during the 4 AdMed Levetiracetam Tablets version: 3.0

weeks prior to screening, as well as at least 4 partial onset seizures in each of the two 4 week baseline periods, were randomised to receive either Levetiracetam or placebo. The population included 198 patients (Levetiracetam N=101, placebo N=97) withuncontrolled partial onset seizures, whether or not secondarily generalised. The study consisted of an 8 week baseline period and 4 week titration period followed by a 10 week evaluation period. Dosing was initiated at a target dose of 20 mg/kg/day in two divided doses. During the treatment period, Levetiracetam doses were adjusted in 20 mg/kg/day increments, at 2 week intervals to the target dose of 60 mg/kg/day (or 40 mg/kg/day as a maximum tolerated dose).

The primary measure of effectiveness was between group comparison of the percent reduction in weekly partial seizure frequency relative to placebo over theentire randomised treatment period (titration + evaluation period). Secondary outcome variables included the responder rate (incidence of patients with \geq 50% reduction from baseline in partial onset seizure frequency per week). Table 10 displays the results of this study.


Table 10. Reduction in mean over placebo in weekly frequency of partial onset seizures

	Placebo (N= 97)	Levetiracetam (N=101)
Percent reduction in partial seizure frequency over placebo	-	26.8% *

^{*} P= 0.0002

The percentage of patients (y-axis) who achieved ≥ 50% reduction in weekly seizure rates from baseline in partial onset seizure frequency over the entire randomised treatment period (titration + evaluation period) within the two treatment groups (x-axis) is presented in Figure 4.

Figure 4. Responder rate (≥50 % reduction from baseline)

^{*} P= 0.0002 Versus placebo

Effectiveness in myoclonic seizures in patients ≥ 12 years of age with juvenile myoclonic epilepsy (JME)

The effectiveness of Levetiracetam as adjunctive therapy in patients 12 years of age and older with juvenile myoclonic epilepsy experiencing myoclonic seizures was established in one multicenter, randomized double blind, placebo controlled study, conducted at 37 sites in 14 countries. Eligible patients on a stable dose of 1 antiepileptic drug (AED) experiencing one or more myoclonic seizures per day for at least 8 days during the prospective 8 week baseline period were randomised to either Levetiracetam or placebo. The population included 120 patients (Levetiracetam N = 60, placebo N = 60) with idiopathic generalised epilepsy which included juvenile myoclonic epilepsy, juvenile absence epilepsy, or epilepsy with generalised tonic-clonic seizures on awakening. The majority were patients with juvenile myoclonic epilepsy. Patients were titrated over 4 weeks to a target dose of 3000 mg/day and treated at a stable dose of 3000 mg/day over 12 weeks (evaluation period). Study drug was given in 2 divided doses.

The primary measure of effectiveness was the proportion of patients with at least 50% reduction in the number of days per week with one or more myoclonic seizures during the treatment period (titration + evaluation periods) as compared to baseline. Secondary outcome variables included seizure frequency per week over the treatment period. Table 11 displays the results of this study.

Table 11. Responder rate (≥50% reduction from baseline) in myoclonic seizure days per week for patients with JME

	Placebo (N=60)	Levetiracetam (N=60)
Percentage of responders	23.3%	58.3%*

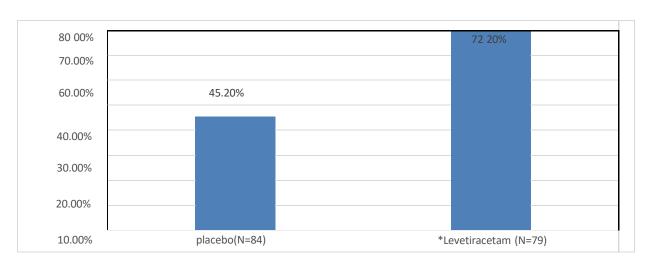
^{*} P= 0.0002

Effectiveness in primary generalised tonic-clonic seizures in patients ≥ 4 years of age with idiopathic generalised epilepsy

The effectiveness of Levetiracetam as adjunctive therapy (added to other antiepileptic drugs) in patients 4 years of age and older with idiopathic generalised epilepsy experiencing primary generalised tonic-clonic (PGTC) seizures was established in one multicenter, randomised, double blind, placebo controlled study, conducted at 50 sites in 8 countries. Eligible patients on a stable dose of 1 or 2 antiepileptic drugs (AEDs) experiencing at least 3 PGTC seizures during the 8 week combined baseline period (at least one PGTC seizure during the 4 weeks prior to the prospective baseline period and at least one PGTC seizure during the 4 week prospective baseline period) were randomised to either Levetiracetam or placebo. The 8 week combined baseline period is referred to as baseline in the remainder of this section. The population included 164 patients (Levetiracetam N = 80, placebo N = 84) with idiopathic generalised epilepsy (predominately juvenile myoclonic epilepsy, juvenileabsence

epilepsy, childhood absence epilepsy, or epilepsy with grand mal seizures on awakening) experiencingprimary generalisedtonic-clonicseizures. Each of these syndromes of idiopathic generalised epilepsy was well represented in this patient population. Patients were titrated over 4 weeks to a target dose of 3000 mg/day for adults or a pediatric target dose of 60 mg/kg/day and treated at a stable dose of 3000 mg/day (or 60 mg/kg/day for children)over 20 weeks (evaluation period). Study drug was given in 2 equally divided doses perday.

The primary measureof effectiveness was the percent reduction from baseline in weekly PGTC seizure frequency for Levetiracetam and placebo treatment groups over the treatment period (titration + evaluation periods). There was a statistically significant decrease from baseline in PGTC frequency in the Levetiracetam treated patients compared to the placebo treated patients. (See Table 12).


Table 12. Median Percent Reduction From Baseline In PGTC Seizure Frequency Per Week

	Placebo (N=84)	Levetiracetam (N=78)
Percent reduction in PGTC seizure frequency	44.6%	77.6%*

^{*}statistically significant versus placebo

The percentage of patients (y-axis) who achieved \geq 50% reduction in weekly seizure rates from baseline in PGTC seizure frequency over the entire randomised treatment period (titration + evaluation period) within the two treatment groups (x-axis) is presented in Figure 5.

Figure 5. Responder Rate (≥50% Reduction from Baseline) In PGTC Seizure Frequency Per Week

MARINE VALUE OF PART AND ADDRESS.

*Statistically significant versus placebo

When Levetiracetam was used to treat primary generalised tonic-clonic seizures in adults and adolescents with idiopathic generalised epilepsy, there was no effect on the frequency of absences.

5.2 PHARMACOKINETIC PROPERTIES

Levetiracetam is a highly soluble and permeable compound. The pharmacokinetic profile is linear and time independent with low intrasubject and intersubject variability. There is no modification of the clearance after repeated administration and no evidence of anyrelevant gender, race or circadian variability. The pharmacokinetic profile is comparable in healthy volunteers and in patients with epilepsy.

Due to its complete and linear absorption, plasma levels can be predicted from the oral dose of Levetiracetam expressed as mg/kg bodyweight. Therefore, monitoring of Levetiracetam plasma level is not required.

A significant correlation between saliva and plasma concentrations has been shown in adults and children (ratio of saliva/ plasma concentrations ranged from 1 to 1.7 for oral tablet formulation and after 4 hours postdose for oral solutionformulation).

A single dose of 1500 mg Levetiracetam diluted in 100 mL of a compatible diluent and infused intravenously over 15 minutes is bioequivalent to 1500 mg Levetiracetam oral intake, given as three 500 mg tablets.

The intravenous administration of doses up to 4000 mg diluted in 100 mL of 0.9% sodium chloride infused over 15 minutes and doses up to 2500 mg diluted in 100 mL of 0.9% sodium chloride infused over 5 minutes was evaluated. The pharmacokinetic and safety profiles did not identify any safety concerns.

Adults and adolescents: -

Absorption

Levetiracetam is rapidly absorbed after oral administration. The oral absolute bioavailability of Levetiracetam is close to 100%. Peak plasma concentrations (C_{max}) are achieved at 1.3 hours after dosing. Steady state is achieved after two days of a twice-daily administration schedule. Peak concentrations (C_{max}) are typically 31 microgram/mL and 43 microgram/mL following a single 1000 mg dose and repeated 1000 mg b.i.d. dose respectively. The extent of absorption is dose independent and is not altered by food, but the rate of absorption is slightly reduced.

Distribution

No tissue distribution data are available in humans. Neither Levetiracetam nor its major

metabolite (ucb L057) are significantly bound to plasma proteins (< 10%). The volume of distribution of Levetiracetam is approximately 0.5 to 0.7 L/kg, a value close to the volume of distribution of intracellular and extracellular water.

Metabolism

The major metabolic pathway (24% of the dose) is an enzymatic hydrolysis of the acetamide group. Production of this metabolite, ucb L057, is not supported by liver cytochrome P450 isoforms. Hydrolysis of the acetamide group was measurable in a large number of tissues including whole blood but not plasma. Themetabolite ucb L057 is pharmacologically inactive.

Two minor metabolites were also identified. One was obtained by hydroxylation of the pyrrolidone ring (1.6% of the dose) and the other one by opening of the pyrrolidone ring (0.9% of the dose).

Other unidentified components accounted for only 0.6% of the dose.

No enantiomeric interconversion was evidenced in vivo for either levetiracetam or its major metabolite ucb L057.

In vitro, levetiracetam and its primary metabolite have been shown not to inhibit the major human liver cytochrome P450 isoforms (CYP3A4, 2A6, 2C9, 2C19, 2D6, 2E1 and 1A2), glucuronyl transferase (UGT1A1 and UGT1A6) and epoxide hydroxylase activities. In addition, levetiracetam does not affect the in vitro glucuronidation of valproicacid.

In human hepatocytes in vitro, levetiracetam had no effect on CYP1A1/2 or UGT isoform activities (including ethinylestradiol conjugation). Levetiracetam caused mild induction of CYP2B6 and CYP3A4, but only at high concentrations not considered to be clinically relevant. Therefore the interaction of Levetiracetam with other substances, or vice versa, isunlikely.

Excretion

Levetiracetam plasma half-life in adults was 7 ± 1 hour and did not vary either dose, route of administration or repeated administration. The mean total body clearance was 0.96 mL/min/kg.

The major route of excretion is via urine, accounting for a mean of 95% of the dose, with approximately 93% of the dose excreted within 48 hours. Excretion via faeces accounted for only 0.3% of the dose. The cumulative urinary excretion of levetiracetam and its major metabolite (ucb L057) accounted for 66% and 24% of the dose respectively during the first 48 hours.

The renal clearance of levetiracetam was 0.6 mL/min/kg, indicating that it was excreted by glomerular filtration with subsequent tubular reabsorption. The renal clearance of the major metabolite, ucb L057, is 4.2 mL/min/kg indicating active tubular secretion in addition to glomerular filtration.

Elderly: -

The half-life in elderly patients is increased by about 40% (10 to 11 hours) and is attributed to the decrease in renal function in this population (see Section 4.2 Dose and Method of Administration).

Children (4 to 12 years of age): -

Following single dose administration (20 mg/kg) to epileptic children (6 to 12 years of age), the half-life of levetiracetam was 6.0 ± 1.1 hours. The apparent body clearance was approximately 30% higher than in epileptic adults.

Following repeated oral dose administration (20 to 60 mg/kg/day) to epileptic children (4 to 12 years of age), levetiracetam was rapidly absorbed. Peak plasma concentration was observed 0.5 to 1.0 hour after dosing. Linear and dose proportional increases were observed for peak plasma concentrations and area under the curve. The elimination half-life was approximately 5 hours. The apparent body clearance was 1.1 mL/min/kg

Infants and children (1 month to 4 years of age): -

Following single dose administration (20 mg/kg) of a 10% oral solution to epileptic children (1 month to 4 years of age), Levetiracetam was rapidly absorbed and peak plasma concentrations were observed approximately 1 hour after dosing. The pharmacokinetic results indicated that half-life was shorter (5.3 h) than for adults (7.2 h) and apparent clearance was faster (1.5 mL/min/kg) than for adults (0.96 mL/min/kg).

Renal impairment: -

The apparent body clearance of both levetiracetam and its major metabolite (ucb L057) is correlated to the creatinine clearance. It is recommended to adjust the maintenance daily dose of Levetiracetam, based on creatinine clearance in patients with moderate and severe renal impairment (see Section 4.2 Dose and Method of Administration).

In anuric end stage renal disease adult subjects, the half-life was approximately 25 and 3.1 hours during interdialytic and intradialytic periods respectively. The fractional removal of Levetiracetam was 51% during a typical 4- hour -dialysis session.

Hepatic impairment: -

In subjects with mild and moderate hepatic impairment, there was no relevant modification of the clearance of Levetiracetam. In most subjects with severe hepatic impairment, the clearance of Levetiracetam

was reduced by more than 50% due to concomitant renal impairment (see Section 4.2 Dose and Method of Administration).

5.3 PRECLINICAL SAFETY DATA

Genotoxicity: -

Levetiracetam was negative in gene mutation assays (bacterial, Chinese hamster ovary/ HGPRT locus) and in assays for chromosomal damage in vitro and in vivo (Chinese hamster ovary cells, mouse micronucleus assay). The hydrolysis product and major human metabolite (ucb L057) was not mutagenic in bacterial reverse mutation assays or the in vitro mouse lymphoma assay.

Carcinogenicity: -

There was no evidence of carcinogenicity following administration of Levetiracetam in the diet to rats or orally to mice for 104 weeks, associated with respective systemic exposures (plasma AUC) up to 4-fold and 8-fold that in humans at the maximal recommended clinical dose of 3000 mg/day.

6 PHARMACEUTICAL PARTICULARS

6.1 LIST OF EXCIPIENTS

Following are the list of excipients present in the formulation of AdMed Levetiracetam film-coated tablets 250 mg, 500 mg, 750 mg and 1000 mg:

- a) 250 mg tablets: pregelatinised maize starch, croscarmellose sodium, copovidone, magnesium stearate, OPADRY II complete film coating system 85F90814 BLUE, OPADRY II complete film coating system 85F19250 Clear, purified talc.
- OPADRY II complete film coating system 85F90814 BLUE contains polyvinyl alcohol, titanium dioxide, polyethylene glycol/ macrogol, talc and FD&C Blue #2/IndigoCarmine.

 OPADRY II complete film coating system 85F19250 Clear contains polyvinyl alcohol,
- polyethylene glycol/ macrogol, talc and polysorbate 80.
- b) 500 mg tablets: pregelatinised maize starch., croscarmellose sodium, copovidone, magnesium stearate, OPADRY II complete film coating system 85F92153 YELLOW, OPADRY II complete film coating system 85F19250 Clear, purified talc.
- OPADRY II complete film coating system 85F92153 YELLOW contains polyvinyl alcohol, titanium dioxide, polyethylene glycol/ macrogol, talc and yellow iron oxide non-irradiated. OPADRY II complete film coating system 85F19250 Clear contains polyvinyl alcohol, polyethylene glycol/ macrogol, talc and polysorbate 80.
- c) 750 mg tablets: pregelatinised maize starch., croscarmellose sodium, copovidone, magnesium stearate, OPADRY II complete film coating system 85F53893 ORANGE, OPADRY II complete film coating system 85F19250 Clear, purified talc.
- OPADRY II complete film coating system 85F53893 ORANGE contains polyvinyl alcohol, titanium dioxide, polyethylene glycol/ macrogol, talc and FD&C yellow #6/sunset yellow FCF aluminium lake.

OPADRY II complete film coating system 85F19250 Clear contains polyvinyl alcohol, polyethylene glycol/ macrogol, talc and polysorbate 80.

d) 1000 mg tablets: pregelatinised maize starch, croscarmellose sodium, copovidone, magnesium stearate, OPADRY II complete film coating system 85F18422 White, OPADRY II complete film coating system 85F19250 Clear, purified talc.

OPADRY II complete film coating system 85F18422 White contains polyvinyl alcohol, titanium dioxide, polyethylene glycol/ macrogol and talc.

OPADRY II complete film coating system 85F19250 Clear contains polyvinyl alcohol, polyethylene glycol/ macrogol, talc and polysorbate 80.

6.2 INCOMPATIBILITIES

Incompatibilities were either not assessed or not identified as part of the registration of this medicine.

6.3 SHELF LIFE

In New Zealand, the established stability for this product is 17 months from the date manufactured when stored at or below 25°C. The expiry date can be found on the packaging.

6.4 SPECIAL PRECAUTIONS FOR STORAGE

Store AdMed Levetiracetam film-coated tablets below 25 °C and keep out of reach of children.

6.5 NATURE AND CONTENTS OF CONTAINER

AdMed Levetiracetam 250 mg, 500 mg, 750 mg and 1000 mg film-coated tablets doses are packaged into clear PVC/PVdC/Aluminium foil blisters -into cartons containing 60 tablets.

6.6 SPECIAL PRECAUTIONS FOR DISPOSAL

Any unused medicine or waste material should be disposed of by taking to your local Pharmacy.

6.7 PHYSICOCHEMICAL PROPERTIES

Chemical name: (S)- α -ethyl-2-oxo-1-pyrrolidineacetamide.

Molecular formula: C₈H₁₄N₂O₂.

CAS number : 102767-28-2

7 MEDICINE SCHEDULE

Prescription Medicine

8 SPONSOR

AdiraMedica Pty Ltd
C/o Core Business Services Ltd,
Chartered Accountants,
2 Khyber Pass Road,
Grafton, Auckland 1023
Telephone: + 64 21 100 6611
auregulatory@adiramedica.com,
aubusiness@adiramedica.com

9 DATE OF FIRST APPROVAL

29th July 21

10 DATE OF REVISION

24th March 2022

SUMMARY TABLE OF CHANGES

Version	Section changed	Summary of changes
3.0	6.3	Shelf life is changed from 17
		months to 36 months from
		the date manufactured.