SUMMARY OF PRODUCT CHARACTERISTICS

1. NAME OF THE MEDICINAL PRODUCT

Trinomia 100 mg/20 mg/10 mg hard capsules
Trinomia 100 mg/20 mg/5 mg hard capsules
Trinomia 100 mg/20 mg/2.5 mg hard capsules

2. QUALITATIVE AND QUANTITATIVE COMPOSITION

Trinomia 100 mg/20 mg/10 mg hard capsules
Each capsule contains 100 mg of acetylsalicylic acid, 20 mg of atorvastatin (as 21.69 mg of atorvastatin calcium trihydrate) and 10 mg of ramipril.

Trinomia 100 mg/20 mg/5 mg hard capsules
Each capsule contains 100 mg of acetylsalicylic acid, 20 mg of atorvastatin (as 21.69 mg of atorvastatin calcium trihydrate) and 5 mg of ramipril.

Trinomia 100 mg/20 mg/2.5 mg hard capsules
Each capsule contains 100 mg of acetylsalicylic acid, 20 mg of atorvastatin (as 21.69 mg of atorvastatin calcium trihydrate) and 2.5 mg of ramipril.

Excipient(s) with known effect: Contains 73.61 mg of lactose monohydrate and 0.48 mg of soya lecithin. For the full list of excipients, see section 6.1.

3. PHARMACEUTICAL FORM

Hard capsule.

Trinomia 100 mg/20 mg/10 mg hard capsules
Size 0 hard shell gelatine capsules (approx. length: 21.7 mm) with opaque pale pink-coloured body and cap, imprinted with “AAR 100/20/10” containing two 50 mg acetylsalicylic white or nearly white film-coated tablet engraved “AS”, two 10 mg atorvastatin greenish-brownish film-coated tablets engraved “AT” and one 10 mg ramipril pale yellow film-coated tablet engraved “R1”.

Trinomia 100 mg/20 mg/5 mg hard capsules
Size 0 hard shell gelatine capsules (approx. length: 21.7 mm) with opaque pale pink-coloured cap and opaque light grey-coloured body, imprinted with “AAR 100/20/5” containing two 50 mg acetylsalicylic white or nearly white film-coated tablet engraved “AS”, two 10 mg atorvastatin greenish-brownish film-coated tablets engraved “AT” and one 5 mg ramipril pale yellow film-coated tablet engraved “R5”.

Trinomia 100 mg/20 mg/2.5 mg hard capsules
Size 0 hard shell gelatine capsules (approx. length: 21.7 mm) with opaque light grey-coloured body and cap, imprinted with “AAR 100/20/2.5” containing two 50 mg acetylsalicylic white or nearly white film-coated tablet engraved “AS”, two 10 mg atorvastatin greenish-brownish film-coated tablets engraved “AT” and one 2.5 mg ramipril pale yellow film-coated tablet engraved “R2”.
4. CLINICAL PARTICULARS

4.1 Therapeutic indications

Trinomia is indicated for the secondary prevention of cardiovascular accidents as substitution therapy in adult patients adequately controlled with the monocomponents given concomitantly at equivalent therapeutical doses.

4.2 Dose and method of administration

Dose

Adults

Patients who are currently controlled with equivalent therapeutical doses of acetylsalicylic acid, atorvastatin and ramipril can be directly switched to Trinomia capsules.

The initiation of treatment should take place under medical supervision (see section 4.4).

For cardiovascular prevention, the target maintenance dose of Ramipril is 10 mg once daily.

Paediatric population

Trinomia is contraindicated in children and adolescents below 18 years of age (see section 4.3).

Special populations

- Patients with renal impairment: Daily dose in patients with renal impairment should be based on creatinine clearance (see section 5.2):
 - if creatinine clearance is \(\geq 60 \text{ ml/min} \), the maximal daily dose of ramipril is 10 mg;
 - if creatinine clearance is between 30-60 ml/min, the maximal daily dose of ramipril is 5 mg;

 In patients in hemodialysis and/or with severe renal impairment (creatinine clearance < 30 ml/min) Trinomia is contraindicated (see section 4.3).

- Patients with hepatic impairment: Trinomia should be administered with caution in case of hepatic impairment (see section 5.2). Liver function tests should be performed before the initiation of treatment and periodically thereafter. Patients who develop any signs or symptoms suggestive of liver injury should have liver function tests performed. Patients who develop increased transaminase levels should be monitored until the abnormality(ies) resolve. Should an increase in transaminases of greater than 3 times the upper limit of normal (ULN) persist, withdrawal of Trinomia is recommended (see section 4.8).

 In addition, the maximum daily dose of ramipril in this patients is 2.5 mg and treatment must be initiated only under close medical supervision.

 In patients with severe or active hepatic impairment Trinomia is contraindicated (see section 4.3).

- Elderly

 In very old and frail patients, treatment should be started with caution because of greater chance of undesirable effects.

Method of administration

Trinomia hard capsules are for oral use.
Trinomia should be taken orally as a single capsule per day, preferably after a meal. Trinomia has to be swallowed with liquid. It must not be chewed nor crushed before swallowing. The capsule must not be opened. The closure system guarantees the pharmacological properties of the active drugs.

Avoid grapefruit juice when taking Trinomia.

4.3 Contraindications

- Hypersensitivity to the active substances, to any of the excipients listed in section 6.1, to other salicylates, to nonsteroidal anti-inflammatory drugs (NSAIDs), to any other ACE (Angiotensin Converting Enzyme) inhibitors or to tartrazine.
- Hypersensitivity to soya or peanut.
- In case of history of previous asthma attacks or other allergic reactions to salicylic acid or other non-steroidal analgesics / anti-inflammatory.
- Active, or history of recurrent peptic ulcer and/or gastric/intestinal haemorrhage, or other kinds of bleeding such as cerebrovascular haemorrhages.
- Haemophilia and other bleeding disorders.
- Severe kidney and liver impairment (see section 4.2).
- Patients in hemodialysis (see section 4.2).
- Severe heart failure.
- Concomitant treatment with methotrexate at a dosage of 15 mg or more per week (see section 4.5).
- Concomitant use of Trinomia with aliskiren-containing products is contraindicated in patients with diabetes mellitus or renal impairment (GFR < 60 ml/min/1.73 m²) (see sections 4.5 and 5.1).
- Patients with nasal polyps associated to asthma induced or exacerbated by acetylsalicylic acid.
- Active liver disease or unexplained persistent elevations of serum transaminases exceeding 3 times the upper limit of normal (see section 4.4).
- During pregnancy, lactation and in women of child-bearing potential not using appropriate contraceptive measures (see section 4.6).
- Due to the risk of rhabdomyolysis concomitant treatment with tipranavir or ritonavir (see section 4.4 and 4.5).
- Due to the risk of rhabdomyolysis concomitant treatment with ciclosporin (see section 4.4 and 4.5).
- History of angioedema (hereditary, idiopathic or due to previous angioedema with ACE inhibitors or Angiotensin II receptor antagonists (AIIRAs).
- Extracorporeal treatments leading to contact of blood with negatively charged surfaces (see section 4.5).
- Significant bilateral renal artery stenosis or renal artery stenosis in a single functioning kidney.
- Ramipril must not be used in patients with hypotensive or haemodynamically unstable states.
- Children and adolescents below 18 years of age. Risk of Reye syndrome exists in case of children under 16 years with fever, flu or chicken pox.

4.4 Special warnings and precautions for use

Trinomia should only be used as a substitution therapy in patients adequately controlled with the monocomponents given concomitantly at equivalent therapeutical doses.

Warnings for special populations:

Particularly careful medical supervision is required in case of:
- hypersensitivity to other analgesics/ antiinflammatory/ antipyretic/ antirheumatics or other allergens (see section 4.3).
- other known allergies (e.g. skin reactions, pruritus, urticaria), bronchial asthma, hay fever, swollen nasal mucous membranes (adenoid hyperplasia) and other chronic respiratory diseases (see section 4.3).
- patients with a history of gastric or enteric ulcers, or of gastrointestinal bleeding (see section 4.3).
- patients with reduced liver and / or renal function (see section 4.2).
- patients at particular risk of hypotension: In patients with strongly activated renin-angiotensin-aldosterone system, transient or persistent heart failure post MI, patients at risk of cardiac or cerebral ischemia, in case
of acute hypotension medical supervision including blood pressure monitoring is necessary to reduce the risk of an acute pronounced fall in blood pressure and deterioration of renal function due to ACE inhibition (section 4.3).
- deterioration of cardiovascular circulation (renal vascular disease, congestive heart failure, volume depletion, major surgery, sepsis or serious haemorrhagic events).
- patients with glucose 6 phosphate dehydrogenase deficiency.
- patients at risk for elevated levels of uric acid.
- patients who consume substantial quantities of alcohol and/or have a history of liver disease.
- diagnosed pregnancy, the treatment should be stopped immediately, and, if appropriate, alternative therapy should be started (see sections 4.3 and 4.6).
- ACE inhibitors cause higher rate of angioedema in black patients than in non black patients.
As with other ACE inhibitors, ramipril may be less effective in lowering blood pressure in black people possibly because of a higher prevalence of hypertension with low renin level in the black hypertensive population

Monitoring during the treatment is required in case of:

- concomitant treatment with nonsteroidal anti inflammatory drugs (NSAIDs), corticosteroids, selective serotonin re-uptake inhibitors (SSRIs), antiplatelet drugs, anticoagulants
- concomitant treatment with ibuprofen
- Patients who develop any signs or symptoms suggestive of liver injury
- Surgery: Therapy with Trinomia should be temporarily stopped a few days prior to elective major surgery and when any major medical or surgical condition supervenes. In case of smaller interventions such as tooth extractions, Trinomia can contribute to the prolongation of bleeding time.
- Particularly careful monitoring is required in patients with renal impairment (see section 4.2). There is a risk of impairment of renal function, particularly in patients with congestive heart failure or after a renal transplant.
- Patients at risk for development of hyperkalaemia i.e renal insufficiency, age > 70 years, uncontrolled diabetes mellitus, conditions such as dehydration, acute cardiac decompensation, metabolic acidosis or those using concomitantly potassium salts, potassium retaining diuretics and other plasma potassium increasing active substances, the regular monitoring of serum potassium is recommended (see section 4.5).

Warning for specific side-effects:

- Hepatic effects:
Liver function tests should be performed periodically.

- Skeletal muscle effects:
Atorvastatin, like other HMG-CoA reductase inhibitors, may in rare occasions affect the skeletal muscle and cause myalgia, myositis, and myopathy that may progress to rhabdomyolysis, a potentially life-threatening condition characterised by markedly elevated creatine kinase (CK) levels (> 10 times ULN), myoglobinemia and myoglobinuria which may lead to renal failure. If CK levels are significantly elevated (> 5 times ULN) at baseline, treatment should not be started. Trinomia must be discontinued if clinically significant elevation of CK levels (> 10 x ULN) occur, or if rhabdomyolysis is diagnosed or suspected.
Creatine kinase (CK) should not be measured following strenuous exercise or in the presence of any plausible alternative cause of CK increase as this makes value interpretation difficult. If CK levels are significantly elevated at baseline (> 5 times ULN), levels should be remeasured within 5 to 7 days later to confirm the results.
The risk of rhabdomyolysis and related events (i.e. myopathy) is increased when TRINOMIA is administered concomitantly with potent inhibitors of CYP3A4 or transport proteins. The risk of myopathy may also be increased with the concomitant use of fibric acid derivates (including gemfibrozil), erythromycin, niacin, ezetimibe, telaprevir, or the combination of tipranavir/ritonavir. In cases where co-administration of these medicinal products with Trinomia is necessary, the benefit and the risk of concurrent treatment should be carefully considered (see section 4.3 and 4.5).
Whilst on treatment:
- Patients must be asked to promptly report muscle pain, cramps, or weakness especially if accompanied by malaise or fever.
- If such symptoms occur whilst a patient is receiving treatment with atorvastatin, their CK levels should be measured. If these levels are found to be significantly elevated (> 5 times ULN), treatment should be stopped.
- If muscular symptoms are severe and cause daily discomfort, even if the CK levels are elevated to 5 x ULN, treatment discontinuation should be considered.
- If symptoms resolve and CK levels return to normal, then re-introduction of atorvastatin or introduction of an alternative statin may be considered with close monitoring.
- Trinomia must be discontinued if clinically significant elevation of CK levels (> 10 x ULN) occur, or if rhabdomyolysis is diagnosed or suspected.

There have been very rare reports of an immune-mediated necrotising myopathy (IMNM) during or after treatment with statins, including atorvastatin. IMNM is clinically characterised by proximal muscle weakness and elevated serum creatine kinase, which persist despite discontinuation of statin treatment.

- **Interstitial lung disease:**
 Exceptional cases of interstitial lung disease have been reported with some statins, especially with long term therapy (see section 4.8). If it is suspected a patient has developed interstitial lung disease, statin therapy should be discontinued.

- **Diabetes Mellitus**
 Patients at risk of diabetes (fasting glucose 5.6 to 6.9 mmol/L, BMI>30kg/m2, raised triglycerides, hypertension) should be monitored both clinically and biochemically according to national guidelines.

- **Angioedema:**
 Angioedema has been reported in patients treated with ACE inhibitors including ramipril (see section 4.8). In case of angioedema, Trinomia must be discontinued.

Emergency therapy should be instituted promptly. Patient should be kept under observation for at least 12 to 24 hours and discharged after complete resolution of the symptoms.

Intestinal angioedema has been reported in patients treated with ACE inhibitors including ramipril (see section 4.8). These patients presented with abdominal pain (with or without nausea or vomiting).

- **Dual blockade of the renin-angiotensin-aldosterone system (RAAS)**
 There is evidence that the concomitant use of ACE-inhibitors, angiotensin II receptor blockers or aliskiren increases the risk of hypotension, hyperkalaemia and decreased renal function (including acute renal failure). Dual blockade of RAAS through the combined use of ACE-inhibitors, angiotensin II receptor blockers or aliskiren is therefore not recommended (see sections 4.5 and 5.1).

If dual blockade therapy is considered absolutely necessary, this should only occur under specialist supervision and subject to frequent close monitoring of renal function, electrolytes and blood pressure.

ACE-inhibitors and angiotensin II receptor blockers should not be used concomitantly in patients with diabetic nephropathy.

- **Anaphylactic reactions during desensitization:**
 The likelihood and severity of anaphylactic and anaphylactoid reactions to insect venom and other allergens are increased under ACE inhibition. A temporary discontinuation of Trinomia should be considered prior to desensitization.

- **Neutropenia/agranulocytosis**
Neutropenia/agranulocytosis, thrombocytopenia and anaemia, have been rarely seen and bone marrow depression has been reported. It is recommended to monitor the white blood cell. More frequent monitoring is advised in the initial phase of treatment and in patients with impaired renal function, those with concomitant collagen disease (e.g. lupus erythematosus or scleroderma), and those treated with other medicinal products that can cause changes in the blood picture (see sections 4.5 and 4.8).

-Cough
Cough has been reported with the use of ACE inhibitors. Characteristically, the cough is non-productive, persistent and resolves after discontinuation of therapy. ACE inhibitor-induced cough should be considered as part of the differential diagnosis of cough.

Trinomia contains lactose. Patients with rare hereditary problems of galactose intolerance, the Lapp lactase deficiency or glucose-galactose malabsorption should not take this medicine.

4.5 Interaction with other medicinal products and other forms of interaction

Acetylsalicylic acid: pharmacodynamic & pharmacokinetic interactions:

- Effect of co-administered medicinal products on Acetylsalicylic acid

Other platelet aggregation inhibitors: Platelet aggregation inhibitors such as: ticlopidine and clopidogrel can lead to increased clotting time.

Other non-steroidal analgesics / anti-inflammatory and antirheumatics: These drugs increase the risk of gastrointestinal bleeding and ulcers.

Systemic glucocorticoids (with the exception of hydrocortisone as replacement therapy in Addison’s disease): Systemic glucocorticoids increase the risk of gastrointestinal ulcers and bleeding.

Diuretics: NSAIDs can cause acute renal failure, especially in dehydrated patients. In case of a concomitant use of Trinomia and diuretics it is recommended to monitor the right hydration of the patients.

Alcohol: Alcohol increases the risk of gastrointestinal ulcers and bleeding.

Selective serotonin reuptake inhibitors (SSRIs): SSRIs increase the risk of bleeding, in particular of gastrointestinal bleeding due to their synergistic effects.

Uricosuric agents: the concomitant treatment with Trinomia reduce the effect of uricosuric agents and increase plasma levels of acetylsalicylic acid by reducing its excretion.

- Effect of Acetylsalicylic acid on co-administered medicinal products

Anticoagulant and thrombolytic therapy: Acetylsalicylic acid may increase the risk of bleeding if taken before or concomitantly with anticoagulant and thrombolytic therapy. Therefore, patients requiring anticoagulant and thrombolytic therapy have to be watched for signs of external or internal bleeding.

Digoxin: NSAIDs increase plasma levels of digoxin. Monitoring of digoxin plasma levels is recommended during the concomitant treatment or withdrawal of Trinomia.

Antidiabetic agents including insulin: The concomitant administration of Trinomia and antidiabetic agents including insulin increase the hypoglycaemic effect of these medicinal products. Blood glucose monitoring is recommended. (see subsection Pharmacodynamic and pharmacokinetic Interactions of ramipril: Precautions for use below).

Methotrexate: salicylates may displace methotrexate from plasma binding proteins and decrease its renal clearance, leading to toxic methotrexate plasma concentrations. Concomitant treatment with methotrexate at a dosage of 15 mg or more per week is contraindicated (see section 4.3). In case of a dosage of methotrexate lower of 15 mg per week, monitoring of renal function and hemogram should be performed, especially at the beginning of the treatment.

Valproic acid: salicylates may displace valproic acid from plasma binding proteins and decrease its metabolism increasing valproic acid plasma concentrations.
Ibuprofen: There is no conclusive evidence regarding the potential of interaction when acetylsalicylic acid is used concomitantly with long-term ibuprofen, although some experimental data showed a decreased effect on platelet aggregation (see Section 5.1).

Antiacids: Antiacids can increase renal elimination of salicylates by alkalinization of urine.

ACE inhibitors: Although it has been reported that acetylsalicylic acid may decrease the beneficial effect of ACE inhibitors by reducing the synthesis of vasodilatory prostaglandins, several studies have found that a negative interaction with ACE inhibitors is present with high doses of aspirin (ie ≥ 325 mg), but not with low doses of aspirin (ie ≤ 100 mg).

Ciclosporine: NSAIDs may increase nephrotoxicity of ciclosporine due to effects mediated by renal prostaglandins. It is recommended to carefully monitor renal function, especially in elderly patients.

Vancomycin: Acetylsalicylic acid may increase the risk of ototoxicity of vancomycin.

Interferon α: Acetylsalicylic acid reduce the activity of interferon α.

Lithium: NSAIDs reduce lithium elimination, increasing plasmatic levels of lithium that can reach toxic values. It is not recommended the concomitant use of lithium with AINEs. If this the combination is needed, plasmatic concentratin of lithium should be carefully monitored during beginning, adjustment and withdrawal of treatment.

Barbiturates: Acetylsalicylic acid increase plasmatic levels of barbiturates.

Zidovudine: Acetylsalicylic acid may increase plasmatic levels of zidovudine because it inhibit competitetely glucuronidation or directly inhibiting hepatic microsomal metabolism.

Phenytoin: Acetylsalicylic acid may increase plasmatic levels of phenytoin.

Laboratory tests: Acetylsalicylic acid may alter the following analytical tests:

- **Blood:** increase (biologic) fo transaminases (ALT and AST), alkaline phosphatase, ammonia, bilirubin, cholesterol, creatine kinase, digoxin, free thyroxine, lactate dehydrogenase (LDH), thyroxine binding globulin, triglycerides, uric acid and valproic acid; increase (analytical interference) of glucose, paracetamol and total proteins; reduction (biologic) of free thyroxine,glucose, phenytoin, TSH, TSH-RH, thyroxine, triglycerides, triiodothyronine, uric acid and creatin clearance; reduction (analytical interference) of transaminases (ALT), albumin, alkaline phosphatase, cholesterol, creatine kinas, lactate dehydrogenase (LDH) and total proteins.
- **Urine:** Reduction (biologic) of estriol; reduction (analytical interference) of 5-hidroxyindolacetic acid, 4-hydroxy-3-methoxymandelic acid, total estrogens and glucose.

Atorvastatin: pharmacodynamic & pharmacokinetic interactions

- **Effect of co-administered medicinal products on atorvastatin**
 Atorvastatin is metabolized by cytochrome P450 3A4 (CYP3A4) and is a substrate to transport proteins e.g. the hepatic uptake transporter OATP1B1. Concomitant administration of medicinal products that are inhibitors of CYP3A4 or transport proteins may lead to increased plasma concentrations of atorvastatin and an increased risk of myopathy. The risk might also be increased at concomitant administration of atorvastatin with other medicinal products that have a potential to induce myopathy, such as fibric acid derivates and ezetimibe (see section 4.4).

CYP3A4 inhibitors:
Potent CYP3A4 inhibitors have been shown to lead to markedly increased concentrations of atorvastatin (see Table 1 and specific information below). Co-administration of potent CYP3A4 inhibitors (e.g. ciclosporin, telithromycin, clarithromycin, delavirdine, stiripentol, ketoconazole, voriconazole, itraconazole, posaconazole and HIV protease inhibitors including ritonavir, lopinavir, atazanavir, indinavir, darunavir, etc.) should be avoided if possible. In cases where co-administration of these medicinal products with atorvastatin cannot be avoided appropriate clinical monitoring of the patient is recommended (see Table 1).

Moderate CYP3A4 inhibitors (e.g. erythromycin, diltiazem, verapamil and fluconazole) may increase plasma concentrations of atorvastatin (see Table 1). An increased risk of myopathy has been observed with the use of erythromycin in combination with statins. Interaction studies evaluating the effects of amiodarone or verapamil on atorvastatin have not been conducted. Both amiodarone and verapamil are known to inhibit CYP3A4 activity and co-administration with atorvastatin may result in increased exposure to atorvastatin.
Therefore, appropriate clinical monitoring of the patient is recommended when concomitantly used with moderate CYP3A4 inhibitors. Appropriate clinical monitoring is recommended after initiation or following dose adjustments of the inhibitor.

CYP3A4 inducers

Concomitant administration of atorvastatin with inducers of cytochrome P450 3A (e.g. efavirenz, rifampin, St. John's Wort) can lead to variable reductions in plasma concentrations of atorvastatin. Due to the dual interaction mechanism of rifampin, (cytochrome P450 3A induction and inhibition of hepatocyte uptake transporter OATP1B1), simultaneous co-administration of atorvastatin with rifampin is recommended, as delayed administration of atorvastatin after administration of rifampin has been associated with a significant reduction in atorvastatin plasma concentrations. The effect of rifampin on atorvastatin concentrations in hepatocytes is, however, unknown and if concomitant administration cannot be avoided, patients should be carefully monitored for efficacy.

Transport protein inhibitors

Inhibitors of transport proteins (e.g. ciclosporin) can increase the systemic exposure of atorvastatin (see Table 1). The effect of inhibition of hepatic uptake transporters on atorvastatin concentrations in hepatocytes is unknown. If concomitant administration cannot be avoided, clinical monitoring for efficacy is recommended (see Table 1).

Gemfibrozil / fibric acid derivatives

The use of fibrates alone is occasionally associated with muscle related events, including rhabdomyolysis. The risk of these events may be increased with the concomitant use of fibric acid derivatives and atorvastatin. If concomitant administration cannot be avoided, patients should be appropriately monitored (see section 4.4).

Ezetimibe

The use of ezetimibe alone is associated with muscle related events, including rhabdomyolysis. The risk of these events may therefore be increased with concomitant use of ezetimibe and atorvastatin. Appropriate clinical monitoring of these patients is recommended.

Colestipol

Plasma concentrations of atorvastatin and its active metabolites were lower (by approx. 25%) when colestipol was coadministered with atorvastatin. However, lipid effects were greater when atorvastatin and colestipol were co-administered than when either medicinal product was given alone.

Fusidic acid

Interaction studies with atorvastatin and fusidic acid have not been conducted. As with other statins, muscle related events, including rhabdomyolysis, have been reported in post-marketing experience with atorvastatin and fusidic acid given concurrently. The mechanism of this interaction is not known. Patients should be closely monitored and temporary suspension of atorvastatin treatment may be appropriate.

Colchicine

Although interaction studies with atorvastatin and colchicine have not been conducted, cases of myopathy have been reported with atorvastatin co-administered with colchicine, and caution should be exercised when prescribing atorvastatin with colchicine.

- **Effect of atorvastatin on co-administered medicinal products**

Digoxin

When multiple doses of digoxin and 10 mg atorvastatin were co-administered, steady-state digoxin concentrations increased slightly. Patients taking digoxin should be monitored appropriately.

Oral contraceptives

Co-administration of atorvastatin with an oral contraceptive produced increases in plasma concentrations of norethindrone and ethinyloestradiol.
Warfarin

In a clinical study in patients receiving chronic warfarin therapy, coadministration of atorvastatin 80 mg daily with warfarin caused a small decrease of about 1.7 seconds in prothrombin time during the first 4 days of dosing which returned to normal within 15 days of atorvastatin treatment. Although only very rare cases of clinically significant anticoagulant interactions have been reported, prothrombin time should be determined before starting atorvastatin in patients taking coumarin anticoagulants and frequently enough during early therapy to ensure that no significant alteration of prothrombin time occurs. Once a stable prothrombin time has been documented, prothrombin times can be monitored at the intervals usually recommended for patients on coumarin anticoagulants. If Trinomia is discontinued, the same procedure should be repeated. Atorvastatin therapy has not been associated with bleeding or with changes in prothrombin time in patients not taking anticoagulants.
Table 1: Effect of co-administered medicinal products on the pharmacokinetics of atorvastatin

<table>
<thead>
<tr>
<th>Co-administered medicinal product and dosing regimen</th>
<th>Atorvastatin Dose (mg)</th>
<th>Change in AUC*</th>
<th>Clinical Recommendation#</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipranavir 500 mg BID/ Ritonavir 200 mg BID, 8 days (days 14 to 21)</td>
<td>40 mg on day 1, 10 mg on day 20</td>
<td>↑ 9.4 fold</td>
<td>Trinomia is contraindicated in this cases.</td>
</tr>
<tr>
<td>Telaprevir 750 mg q8h, 10 days</td>
<td>20 mg, SD</td>
<td>↑ 7.9 fold</td>
<td></td>
</tr>
<tr>
<td>Ciclosporin 5.2 mg/kg/day, stable dose</td>
<td>10 mg OD for 28 days</td>
<td>↑ 8.7 fold</td>
<td></td>
</tr>
<tr>
<td>Lopinavir 400 mg BID/ Ritonavir 100 mg BID, 14 days</td>
<td>20 mg OD for 4 days</td>
<td>↑ 5.9 fold</td>
<td>No specific recommendation. At atorvastatin doses exceeding 20 mg, clinical monitoring of these patients would be recommended.</td>
</tr>
<tr>
<td>Clarithromycin 500 mg BID, 9 days</td>
<td>80 mg OD for 4 days</td>
<td>↑ 4.4 fold</td>
<td></td>
</tr>
<tr>
<td>Saquinavir 400 mg BID/ Ritonavir (300 mg BID from days 5-7, increased to 400 mg BID on day 8), days 5-18, 30 min after atorvastatin dosing</td>
<td>40 mg OD for 4 days</td>
<td>↑ 3.9 fold</td>
<td>No specific recommendation</td>
</tr>
<tr>
<td>Darunavir 300 mg BID/Ritonavir 100 mg BID, 9 days</td>
<td>10 mg OD for 4 days</td>
<td>↑ 3.3 fold</td>
<td></td>
</tr>
<tr>
<td>Itraconazole 200 mg OD, 4 days</td>
<td>40 mg SD</td>
<td>↑ 3.3 fold</td>
<td></td>
</tr>
<tr>
<td>Fosamprenavir 700 mg BID/ Ritonavir 100 mg BID, 14 days</td>
<td>10 mg OD for 4 days</td>
<td>↑ 2.5 fold</td>
<td></td>
</tr>
<tr>
<td>Fosamprenavir 1400 mg BID, 14 days</td>
<td>10 mg OD for 4 days</td>
<td>↑ 2.3 fold</td>
<td></td>
</tr>
<tr>
<td>Nelfinavir 1250 mg BID, 14 days</td>
<td>10 mg OD for 28 days</td>
<td>↑ 1.7 fold^</td>
<td>No specific recommendation.</td>
</tr>
<tr>
<td>Grapefruit Juice, 240 mL OD *</td>
<td>40 mg, SD</td>
<td>↑ 37%</td>
<td>Concomitant intake of large quantities of grapefruit juice and atorvastatin is not recommended.</td>
</tr>
<tr>
<td>Diltiazem 240 mg OD, 28 days</td>
<td>40 mg, SD</td>
<td>↑ 51%</td>
<td>After initiation or following dose adjustments of diltiazem, appropriate clinical monitoring of these patients is recommended.</td>
</tr>
<tr>
<td>Erythromycin 500 mg QID, 7 days</td>
<td>10 mg, SD</td>
<td>↑ 33%^</td>
<td>Appropriate clinical monitoring of these patients is recommended.</td>
</tr>
<tr>
<td>Amlodipine 10 mg, single dose</td>
<td>80 mg, SD</td>
<td>↑ 18%</td>
<td>No specific recommendation.</td>
</tr>
<tr>
<td>Cimetidine 300 mg QID, 2 weeks</td>
<td>10 mg OD for 4 weeks</td>
<td>↓ less than 1%</td>
<td>No specific recommendation.</td>
</tr>
<tr>
<td>Antiacid suspension of magnesium and aluminium hydroxides, 30 mL QID, 2 weeks</td>
<td>10 mg OD for 4 weeks</td>
<td>↓ 35%^</td>
<td>No specific recommendation.</td>
</tr>
<tr>
<td>Efavirenz 600 mg OD, 14 days</td>
<td>10 mg for 3 days</td>
<td>↓ 41%</td>
<td>No specific recommendation.</td>
</tr>
<tr>
<td>Rifampin 600 mg OD, 7 days (co-administered)</td>
<td>40 mg SD</td>
<td>↑ 30%</td>
<td>If co-administration cannot be avoided, simultaneous coadministration of atorvastatin with rifampin is recommended, with clinical monitoring.</td>
</tr>
<tr>
<td>Rifampin 600 mg OD, 5 days (doses separated)</td>
<td>40 mg SD</td>
<td>↓ 80%</td>
<td></td>
</tr>
<tr>
<td>Gemfibrozil 600 mg BID, 7 days</td>
<td>40 mg SD</td>
<td>↑ 35%</td>
<td>Clinical monitoring of these patients is recommended.</td>
</tr>
<tr>
<td>Fenofibrate 160 mg OD, 7 days</td>
<td>40 mg SD</td>
<td>↑ 3%</td>
<td>Clinical monitoring of these patients is recommended.</td>
</tr>
<tr>
<td>Boceprevir 800 mg TID, 7 days</td>
<td>40 mg SD</td>
<td>↑ 2.3 fold</td>
<td>Lower starting dose and clinical monitoring of these patients is recommended. The dose of atorvastatin should not exceed a daily dose of 20 mg during co-administration with boceprevir.</td>
</tr>
</tbody>
</table>
Data given as x-fold change represent a simple ratio between co-administration and atorvastatin alone (i.e., 1-fold = no change). Data given as % change represent % difference relative to atorvastatin alone (i.e., 0% = no change).

See sections 4.3, 4.4 and 4.5 for clinical significance.

Contains one or more components that inhibit CYP3A4 and can increase plasma concentrations of medicinal products metabolized by CYP3A4. Intake of one 240 ml glass of grapefruit juice also resulted in a decreased AUC of 20.4% for the active orthohydroxy metabolite. Large quantities of grapefruit juice (over 1.2 l daily for 5 days) increased AUC of atorvastatin 2.5 fold and AUC of active (atorvastatin and metabolites).

Total atorvastatin equivalent activity
Increase is indicated as “↑”, decrease as “↓”

OD = once daily; SD = single dose; BID = twice daily; TID = three times daily; QID = four times daily

Table 2: Effect of atorvastatin on the pharmacokinetics of co-administered medicinal products

<table>
<thead>
<tr>
<th>Atorvastatin and doping regimen</th>
<th>Co-administered medicinal product</th>
<th>Change in AUC &</th>
<th>Clinical Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>80 mg OD for 10 days</td>
<td>Digoxin 0.25 mg OD, 20 days</td>
<td>↑ 15%</td>
<td>Patients taking digoxin should be monitored appropriately.</td>
</tr>
<tr>
<td>40 mg OD for 22 days</td>
<td>Oral contraceptive OD, 2 months - norethindrone 1 mg - ethinyl estradiol 35 μg</td>
<td>↑ 28%</td>
<td>No specific recommendation.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>↑ 19%</td>
<td></td>
</tr>
<tr>
<td>80 mg OD for 15 days</td>
<td>* Phenazone, 600 mg SD</td>
<td>↑ 3.0%</td>
<td>No specific recommendation.</td>
</tr>
<tr>
<td>10 mg, SD</td>
<td>Tipranavir 500 mg BID/ritonavir 200 mg BID, 7 days</td>
<td>No change</td>
<td>No specific recommendation</td>
</tr>
<tr>
<td>10 mg, OD for 4 days</td>
<td>Fosamprenavir 1400 mg BID, 14 days</td>
<td>↓ 27%</td>
<td>No specific recommendation</td>
</tr>
<tr>
<td>10 mg OD for 4 days</td>
<td>Fosamprenavir 700 mg BID/ritonavir 100 mg BID, 14 days</td>
<td>No change</td>
<td>No specific recommendation</td>
</tr>
</tbody>
</table>

Data given as % change represent % difference relative to atorvastatin alone (i.e., 0% = no change)

Co-administration of multiple doses of atorvastatin and phenazone showed little or no detectable effect in the clearance of phenazone.

Increase is indicated as “↑”, decrease as “↓”

OD = once daily; SD = single dose

Ramipril: pharmacodynamic & pharmacokinetic interactions

Contra-indicated combinations
Extracorporeal treatments leading to contact of blood with negatively charged surfaces such as dialysis or haemofiltration with certain high-flux membranes (e.g. polyacrylonitril membranes) and low density lipoprotein apheresis with dextran sulphate due to increased risk of severe anaphylactoid reactions (see section 4.3). If such treatment is required, consideration should be given to using a different type of dialysis membrane or a different class of antihypertensive agent.

Precautions for use

- Potassium salts, heparin, potassium-retaining diuretics and other plasma potassium increasing active substances (including Angiotensin II antagonists, trimethoprim, tacrolimus): Hyperkalaemia may occur, therefore close monitoring of serum potassium is required.
- Antihypertensive agents (e.g. diuretics) and other substances that may decrease blood pressure (e.g. nitrates, tricyclic antidepressants, anaesthetics, acute alcohol intake, baclofen, alfuzosin, doxazosin, prazosin, tamsulosin, terazosin): Potentiation of the risk of hypotension is to be anticipated.

Clinical trial data has shown that dual blockade of the renin-angiotensin-aldosterone-system (RAAS) through the combined use of ACE-inhibitors, angiotensin II receptor blockers or aliskiren is associated with a higher frequency of adverse events such as hypotension, hyperkalaemia and decreased renal function.
(including acute renal failure) compared to the use of a single RAAS-acting agent (see sections 4.3, 4.4 and 5.1).

- Vasopressor sympathomimetics and other substances (e.g. isoproterenol, dobutamine, dopamine, epinephrine) that may reduce the antihypertensive effect of ramipril: Blood pressure monitoring is recommended.
- Allopurinol, immunosuppressants, corticosteroids, procarbazine, cytostatics and other substances that may change the blood cell count: Increased likelihood of haematological reactions (see section 4.4).
- Lithium salts: Excretion of lithium may be reduced by ACE inhibitors and therefore lithium toxicity may be increased. Lithium level must be monitored.
- Antidiabetic agents including insulin: Hypoglycaemic reactions may occur. Blood glucose monitoring is recommended.

4.6 Fertility, pregnancy and lactation

Pregnancy

Trinomia is contraindicated during pregnancy (see section 4.3).

The use of ACE inhibitors is not recommended during the first trimester of pregnancy (see section 4.4). The use of ACE inhibitors is contraindicated during the second and third trimester of pregnancy (see sections 4.3 and 4.4).

Epidemiological evidence regarding the risk of teratogenicity following exposure to ACE inhibitors during the first trimester of pregnancy has not been conclusive; however a small increase in risk cannot be excluded. Unless continued ACE inhibitor therapy is considered essential, patients planning pregnancy should be changed to alternative anti-hypertensive treatments which have an established safety profile for use in pregnancy. When pregnancy is diagnosed, treatment with ACE inhibitors should be stopped immediately, and, if appropriate, alternative therapy should be started.

ACE inhibitor/ Angiotensin II Receptor Antagonist (AIIRA) therapy exposure during the second and third trimesters is known to induce human fetotoxicity (decreased renal function, oligohydramnios, skull ossification retardation) and neonatal toxicity (renal failure, hypotension, hyperkalaemia). (See also 5.3 'Preclinical safety data'). Should exposure to ACE inhibitor have occurred from the second trimester of pregnancy, ultrasound check of renal function and skull is recommended. Newborns whose mothers have taken ACE inhibitors should be closely observed for hypotension, oliguria and hyperkalaemia (see also sections 4.3 and 4.4).

During first and second trimester of pregnancy, acetylsalicylic acid should be taken only in cases strictly needed.

Inhibition of prostaglandin synthesis may have negative effects on the pregnancy and/or the embryonic/foetal development. Data from epidemiological studies show increased risk of foetal death as well as cardiac defects and gastroschisis after administration of prostaglandin synthesis inhibitors in the early pregnancy. It is assumed that the risk increases in relation to dosage strength and treatment duration.

Previous experience with daily doses of 50–150 mg acetylsalicylic acid administered to pregnant women in the second and third trimester did not show inhibition of labour, increased tendency for bleeding, or premature occlusion of the ductus arteriosus.

There are no enough data that can endorse or discard the association of acetylsalicylic acid with an increased risk of miscarriage. In addition, there are no data that demonstrated the association of acetylsalicylic acid with malformation, although it cannot be excluded an increased risk of gastroschisis.

In a meta-analysis that includes 6 cohort studies, 1 controlled randomised study and 15 case-control studies (Kozer et al, 2002) about the relationship between malformations and the treatment with acetylsalicylic acid
During first trimester of pregnancy, it was not showed a significant increase in malformations risk (odds ratio= 1.33 OR IC 95%: 0.94 – 1.89). The most important cohort study included approximately 15000 pregnant women that had taken acetylsalicylic acid during the first trimester of pregnancy.

Studies in animals have shown reproductive toxicity regarding the active substances acetylsalicylic acid, atorvastatin and ramipril (see section 5.3).

In case of women planning to become pregnant or pregnant women in first or second trimester taken acetylsalicylic acid, the duration of treatment should be as shorter as possible.

During third trimester of pregnancy, due to the use of prostaglandin synthesis inhibitors, the foetus may be exposed to:

- Cardiopulmonary toxicity (premature closure of ductus arteriosus and pulmonary hypertension)
- Renal insufficiency, that can result in kidney failure and oligohidramniosis.

The mother and the foetus, at the end of the pregnancy, may be exposed to:

- Possible prolongation of bleeding time, an antiaggregant effect that may occur even at lower doses.
- Inhibition of uterine contractions resulting in a delay or extension of time of labor.

Atorvastatin safety in pregnant women has not been established. No controlled clinical trials with atorvastatin have been conducted in pregnant women. Rare reports of congenital anomalies following intrauterine exposure to HMG-CoA reductase inhibitors have been received. Animal studies have shown toxicity to reproduction (see section 5.3).

Maternal treatment with atorvastatin may reduce the fetal levels of mevalonate which is a precursor of cholesterol biosynthesis. Atherosclerosis is a chronic process, and ordinarily discontinuation of lipid-lowering medicinal products during pregnancy should have little impact on the long-term risk associated with primary hypercholesterolaemia.

For these reasons, Trinomia must not be used in women who are pregnant, trying to become pregnant or suspect they are pregnant. Treatment with Trinomia must be suspended for the duration of pregnancy or until it has been determined that the woman is not pregnant. (see sections 4.3 and 4.4.)

Lactation

Small quantities of acetylsalicylic acid and its metabolites pass into the breast milk. It is not known whether atorvastatin or its metabolites are excreted in human milk. Moreover, insufficient information is available regarding the use of ramipril during breastfeeding (see section 5.2).

Because of the potential for serious adverse reactions, women taking Trinomia must not breast-feed their infants (see section 4.3).

Fertility

Women of child-bearing potential should use effective contraception during treatment (see section 4.3).

4.7 Effects on ability to drive and use machines

Both acetylsalicylic acid and atorvastatin have no or negligible influence on the ability to drive and use machines.

Due to the ramipril component, some adverse effects (e.g. symptoms of a reduction in blood pressure such as dizziness) may impair the patient’s ability to concentrate and react and, therefore, constitute a risk in situations where these abilities are of particular importance (e.g. operating a vehicle or machinery).
This can happen especially when changing over from other preparations and when increasing the dose. Therefore when taking Trinomia it is not advisable to drive or operate machinery for several hours.

4.8 Undesirable effects

Summary of the safety profile

Trinomia should only be used as a substitution therapy in patients adequately controlled with the monocomponents given concomitantly at equivalent therapeutical doses. The most common undesirable effects associated with aspirin treatment are gastrointestinal complaints. Ulceration and bleeding are uncommon (less than 1 case per 100). Gastrointestinal tract perforation is very rare (less than 1 case per 10,000). Immediately inform your physician when you notice black stools or blood in your vomit (signs of severe gastric bleeding).

Known adverse effects with ramipril therapy include persistent dry cough and reactions due to hypotension. Uncommon (less than 1 case per 100) adverse effects associated with ramipril therapy included angioedema, renal and hepatic impairments. Neutropenia, agranulocytosis rarely occur (less than 1 case per 1,000).

Myalgia (muscle pain, muscle spasms, joint swelling) is a common adverse effect with statins treatment. Myopathy and rhabdomyolysis are rare (less than 1 case per 1,000). Monitoring of CK is to be considered as part of evaluation of patients with CK levels significantly elevated at baseline (> 5 times ULN).

In the atorvastatin placebo-controlled clinical trial database of 16,066 (8755 atorvastatin vs. 7311 placebo) patients treated for a mean period of 53 weeks, 5.2% of patients on atorvastatin discontinued due to adverse reactions compared to 4.0% of the patients on placebo.

As with other HMG-CoA reductase inhibitors elevated serum transaminases have been reported in patients receiving atorvastatin. These changes were usually mild, transient, and did not require interruption of treatment. Clinically important (> 3 times upper normal limit) elevations in serum transaminases occurred in 0.8% patients on atorvastatin. These elevations were dose related and were reversible in all patients.

Elevated serum creatine kinase (CK) levels greater than 3 times upper limit of normal occurred in 2.5% of patients on atorvastatin, similar to other HMG-CoA reductase inhibitors in clinical trials. Levels above 10 times the normal upper range occurred in 0.4% atorvastatin-treated patients (see section 4.4).

The following adverse events have been reported with some statins:
- Sexual dysfunction.
- Depression.
- Exceptional cases of interstitial lung disease, especially with long term therapy (see section 4.4).
- Diabetes Mellitus: Frequency will depend on the presence or absence of risk factors (fasting blood glucose ≥ 5.6 mmol/L, BMI>30kg/m2, raised triglycerides, history of hypertension).

Tabulated summary of adverse reactions

<table>
<thead>
<tr>
<th>MedDRA System Organ class</th>
<th>Undesirable Effects</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood and lymphatic system disorders</td>
<td>Eosinophilia.</td>
<td>Uncommon</td>
</tr>
<tr>
<td></td>
<td>White blood cell count decreased (including neutropenia or agranulocytosis), red blood cell count decreased, haemoglobin</td>
<td>Rare</td>
</tr>
</tbody>
</table>
Severe haemorrhages that can be life-threatening in some cases, for example cerebral haemorrhage, have been reported, especially in patients with uncontrolled hypertension and/or concurrent treatment with anticoagulants. Bleeding such as nose bleed, bleeding gums, bleeding skin or bleeding in the urogenital tract are observed, with a possible prolongation of the clotting time (see section 4.4). This effect may last for 4 to 8 days after ingestion.

<table>
<thead>
<tr>
<th>Gastrointestinal disorders</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Decreased, platelet count decreased (thrombocytopenia).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Severe haemorrhages</td>
<td>Rare</td>
<td></td>
</tr>
<tr>
<td>Bone marrow failure, pancytopenia, haemolytic anaemia.</td>
<td>Not known</td>
<td></td>
</tr>
<tr>
<td>Gastrointestinal complaints such as heartburn, nausea, vomiting, stomach ache and diarrhoea.</td>
<td>Very common</td>
<td></td>
</tr>
<tr>
<td>Minor blood loss from the gastrointestinal tract (micro-bleeding).</td>
<td>Very common</td>
<td></td>
</tr>
<tr>
<td>Dyspepsia, nausea, diarrhoea.</td>
<td>Common</td>
<td></td>
</tr>
<tr>
<td>Vomiting</td>
<td>Uncommon</td>
<td></td>
</tr>
<tr>
<td>Digestive disturbances, abdominal discomfort,</td>
<td>Common</td>
<td></td>
</tr>
<tr>
<td>Gastrointestinal inflammation.</td>
<td>Uncommon</td>
<td></td>
</tr>
<tr>
<td>Constipation.</td>
<td>Uncommon</td>
<td></td>
</tr>
<tr>
<td>Flatulence.</td>
<td>Common</td>
<td></td>
</tr>
<tr>
<td>Gastrointestinal ulcers.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastrointestinal bleeding.</td>
<td>Uncommon</td>
<td></td>
</tr>
<tr>
<td>Iron deficiency anaemia due to occult blood losses from the gastrointestinal tract after long-term use.</td>
<td>Uncommon</td>
<td></td>
</tr>
<tr>
<td>Abdominal pain upper and lower, eructation, pancreatitis.</td>
<td>Uncommon</td>
<td></td>
</tr>
<tr>
<td>Pancreatitis (cases of fatal outcome have been very exceptionally reported with ACE inhibitors), pancreatic enzymes increased, small bowell angioedema, abdominal pain upper including gastritis, dry mouth</td>
<td>Uncommon</td>
<td></td>
</tr>
<tr>
<td>Glossitis.</td>
<td>Rare</td>
<td></td>
</tr>
<tr>
<td>Perforation of a gastrointestinal ulcer. Immediately inform your physician when you notice black stools or blood in your vomit (signs of severe gastric bleeding).</td>
<td>Very rare</td>
<td></td>
</tr>
<tr>
<td>Aphthous stomatitis.</td>
<td>Not known</td>
<td></td>
</tr>
<tr>
<td>Medical Condition</td>
<td>Ramipril</td>
<td>Atorvastatin</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------</td>
<td>--------------</td>
</tr>
<tr>
<td>Respiratory, thoracic and mediastinal disorders</td>
<td>Paroxysmal bronchospasm, serious dyspnoea, rhinitis, nasal congestion.</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Pharyngolaryngeal pain, epistaxis.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Non-productive tickling cough, bronchitis, sinusitis, dyspnoea.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bronchospasm including asthma aggravated, nasal congestion.</td>
<td></td>
</tr>
<tr>
<td>Infections and infestations</td>
<td>Nasopharyngitis.</td>
<td></td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>Headache.</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Dizziness</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Vertigo, ageusia.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hypoesthesia, amnesia.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Peripheral neuropathy.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tremor, balance disorder.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cerebral ischaemia including ischaemic stroke and transient ischaemic attack, psychomotor skills impaired, burning sensation, parosmia.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Headache, dizziness, impaired hearing or buzzing in the ears (tinnitus) and mental confusion</td>
<td></td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td>Rash in particular maculo-papular.</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Cutaneous reactions.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Urticaria, skin rash, pruritus, alopecia.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Angioedema; very exceptionally, the airway obstruction resulting from angioedema may have a fatal outcome, pruritus, hyperhidrosis.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Angioneurotic oedema, dermatitis bullous including erythema multiforme, Stevens-Johnson syndrome and toxic epidermal necrolysis.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exfoliative dermatitis, onycholysis.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Photosensitivity reaction.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Erythema multiforme</td>
<td>Not known</td>
</tr>
<tr>
<td></td>
<td>Toxic epidermal necrolysis, Steve-Johnson syndrome</td>
<td>Not known</td>
</tr>
<tr>
<td></td>
<td>Pemphigus, psoriasis aggravated, dermatitis psoriasiform, pemphigoid or lichenoid exanthema or enanthema, alopecia</td>
<td>Not known</td>
</tr>
<tr>
<td>Disorder Type</td>
<td>Condition</td>
<td>Ramipril</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>Immune system disorders</td>
<td>Allergic reactions.</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Hypersensitive reactions of the skin, respiratory tract, the gastrointestinal tract, and the cardiovascular system, especially in asthma patients (with these possible symptoms: reduction of blood pressure, dyspnoea, rhinitis, nasal congestion, anaphylactic shock, Quincke’s oedema).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anaphylaxis.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anaphylactic or anaphylactoid reactions, antinuclear antibody increased.</td>
<td>Not known</td>
</tr>
<tr>
<td>Hepatobiliary disorders</td>
<td>Hepatitis.</td>
<td>Uncommon</td>
</tr>
<tr>
<td></td>
<td>Hepatic enzymes and/or bilirubin conjugated increased.</td>
<td>Uncommon</td>
</tr>
<tr>
<td></td>
<td>Cholestasis.</td>
<td>Rare</td>
</tr>
<tr>
<td></td>
<td>Jaundice cholestatic, hepatocellular damage.</td>
<td>Rare</td>
</tr>
<tr>
<td></td>
<td>Hepatic failure.</td>
<td>Very rare</td>
</tr>
<tr>
<td></td>
<td>Elevated values in blood liver tests.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acute hepatic failure, cholestatic or cytolytic hepatitis (fatal outcome has been very exceptional).</td>
<td>Not known</td>
</tr>
<tr>
<td>Renal and urinary disorders</td>
<td>Renal impairment including renal failure acute, urine output increased, worsening of a pre-existing proteinuria, blood urea increased, blood creatinine increased.</td>
<td>Uncommon</td>
</tr>
<tr>
<td></td>
<td>Renal impairment</td>
<td></td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td>Hyperglycaemia.</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Blood potassium increased.</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Hypoglycaemia.</td>
<td>Uncommon</td>
</tr>
<tr>
<td></td>
<td>Weight gain.</td>
<td>Uncommon</td>
</tr>
<tr>
<td></td>
<td>Anorexia.</td>
<td>Uncommon</td>
</tr>
<tr>
<td></td>
<td>Decreased appetite.</td>
<td>Uncommon</td>
</tr>
<tr>
<td></td>
<td>At low doses, acetylsalicylic acid reduces the excretion of uric acid. In susceptible patients, this may cause attacks of gout.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Blood sodium decreased.</td>
<td>Not known</td>
</tr>
<tr>
<td>Psychiatric disorders</td>
<td>Nightmare, insomnia.</td>
<td>Uncommon</td>
</tr>
<tr>
<td></td>
<td>Depressed mood, anxiety, nervousness, restlessness, sleep disorder including somnolence.</td>
<td>Uncommon</td>
</tr>
<tr>
<td></td>
<td>Confusional state.</td>
<td>Rare</td>
</tr>
<tr>
<td></td>
<td>Disturbance in attention.</td>
<td>Not known</td>
</tr>
<tr>
<td>Eye disorders</td>
<td>Blurred vision.</td>
<td>Uncommon</td>
</tr>
<tr>
<td></td>
<td>Visual disturbance.</td>
<td>Uncommon</td>
</tr>
<tr>
<td></td>
<td>Conjunctivitis.</td>
<td>Rare</td>
</tr>
<tr>
<td>Condition</td>
<td>Ramipril</td>
<td>Atorvastatin</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>--------------</td>
</tr>
<tr>
<td>Ear and labyrinth disorders</td>
<td>Tinnitus.</td>
<td>Rare</td>
</tr>
<tr>
<td></td>
<td>Hearing impaired.</td>
<td>Rare</td>
</tr>
<tr>
<td></td>
<td>Hearing loss.</td>
<td>Very rare</td>
</tr>
<tr>
<td>Musculoskeletal and connective tissue disorders</td>
<td>Myalgia, muscle spasms.</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Pain in extremity, joint swelling, back pain.</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Arthralgia.</td>
<td>Uncommon</td>
</tr>
<tr>
<td></td>
<td>Neck pain, muscle fatigue.</td>
<td>Uncommon</td>
</tr>
<tr>
<td></td>
<td>Myopathy, myositis, rhabdomyolysis, tendonopathy, sometimes complicated by rupture.</td>
<td>Rare</td>
</tr>
<tr>
<td></td>
<td>Immune-mediated necrotizing myopathy (see section 4.4)</td>
<td>Not known</td>
</tr>
<tr>
<td>Reproductive system and breast disorders</td>
<td>Transient erectile impotence, libido decreased.</td>
<td>Uncommon</td>
</tr>
<tr>
<td></td>
<td>Gynaecomastia.</td>
<td>Not known</td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td>Chest pain, fatigue.</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Pyrexia</td>
<td>Uncommon</td>
</tr>
<tr>
<td></td>
<td>Malaise, peripheral oedema.</td>
<td>Uncommon</td>
</tr>
<tr>
<td></td>
<td>Asthenia</td>
<td>Rare</td>
</tr>
<tr>
<td>Investigations</td>
<td>Liver function test abnormal, blood creatine kinase increased.</td>
<td>Uncommon</td>
</tr>
<tr>
<td></td>
<td>White blood cells urine positive</td>
<td>Common</td>
</tr>
<tr>
<td>Cardiac disorders</td>
<td>Myocardial ischaemia including angina pectoris or myocardial infarction, tachycardia, arrhythmia, palpitations, oedema peripheral</td>
<td>Uncommon</td>
</tr>
<tr>
<td>Vascular disorders</td>
<td>Hypotension, orthostatic blood pressure decreased, syncope.</td>
<td>Common</td>
</tr>
<tr>
<td></td>
<td>Flushing.</td>
<td>Uncommon</td>
</tr>
<tr>
<td></td>
<td>Vascular stenosis, hypoperfusion, vasculitis.</td>
<td>Rare</td>
</tr>
<tr>
<td></td>
<td>Raynaud’s phenomenon.</td>
<td>Not known</td>
</tr>
</tbody>
</table>
Reporting of suspected adverse reactions

Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions https://nzphvc.otago.ac.nz/reporting/.

4.9 Overdose

For advice on the management of overdose please contact the National Poisons Centre on 0800 POISON (0800 764766).

Acetylsalicylic acid

In chronic overdose of acetylsalicylic acid, symptoms of the central nervous system predominate such as drowsiness, dizziness, confusion or nausea (salicylism). Acute acetylsalicylic intoxication, on the other hand, is a severe disruption of the acid-base equilibrium. Even within the range of therapeutic doses, increased breathing leads to respiratory alkalosis, which is compensated by increased renal excretion of hydrogen carbonate to maintain normal blood pH. Under toxic doses, the compensation is no longer sufficient and the blood pH decreases as well as the concentration of hydrogen carbonate. At times, pCO₂ in the plasma may be normal. The condition appears to be metabolic acidosis, though it is a combination of respiratory and metabolic acidosis. The causes for this are: limitation of breathing by toxic doses, accumulation of acid, in part due to decreased elimination by the kidneys (sulfuric and phosphoric acid, as well as salicylic acid, lactic acid, acetoacetic acid and others), due to a severe disruption of carbohydrate metabolism. Additionally, an electrolyte imbalance and major losses of potassium are observed.

Symptoms of acute intoxication

In addition to acid-base imbalances, electrolyte imbalances (e.g. loss of potassium), hypoglycemia, skin rashes and gastrointestinal bleeding, symptoms such as hyperventilation, tinnitus, nausea, vomiting, disruption of vision and hearing, headaches, dizziness and disorientation are observed as well. Severe intoxication (above 400 μg/ml) may result in deliria, tremor, respiratory distress, sweating, dehydration, hyperthermia and coma. For lethal intoxications, death is usually caused by failure of respiratory function.

Therapy of intoxication

The scope of therapeutic options for poisoning with acetylsalicylic acid is determined by the severity, stage, and the clinical symptoms of the intoxication. They correspond to the standard procedures to decrease absorption of the substance, balancing hydration and electrolytes, as well as controlling the disrupted thermal regulation and respiratory function. Therapy is dominated by treatments that accelerate elimination and normalize the acid-base and electrolyte balance. In addition to infusions of sodium bicarbonate and potassium chloride, diuretics are also administered. The pH value of the urine should be basic to increase the degree of ionization of the salicylic acid and as a result to decrease tubular reabsorption. Control of the blood chemistry (pH value, pCO₂, bicarbonate, potassium etc.) is highly recommended. Severe cases may require hemodialysis.

In case of a suspected overdose, the patient should be kept under observation during 24 hours because appearance of symptoms and salicylates plasmatic levels may take several hours.

Atorvastatin

Specific treatment is not available for atorvastatin overdose. Should an overdose occur, the patient should be treated symptomatically and supportive measures instituted, as required. Liver function tests should be performed and serum CK levels should be monitored. Due to extensive atorvastatin binding to plasma proteins, haemodialysis is not expected to significantly enhance atorvastatin clearance.
Ramipril

Symptoms associated with overdosage of ACE inhibitors may include excessive peripheral vasodilatation (with marked hypotension, shock), bradycardia, electrolyte disturbances, and renal failure. The patient should be closely monitored and the treatment should be symptomatic and supportive. Suggested measures include primary detoxification (gastric lavage, administration of adsorbents) and measures to restore haemodynamic stability, including, administration of alpha 1 adrenergic agonists or angiotensin II (angiotensinamide) administration. Ramiprilat, the active metabolite of ramipril is poorly removed from the general circulation by haemodialysis.

5. PHARMACOLOGICAL PROPERTIES

5.1 Pharmacodynamic properties

Pharmacotherapeutic group: HMG-CoA Reductase inhibitors, other combinations.
ATC code: C10BX06

Paediatric population

The European Medicines Agency has waived the obligation to submit the results of studies with Trinomia in all subsets of the paediatric population in the prevention of ischaemic heart disease (see section 4.2 for information on paediatric use).

Acetylsalicylic acid

Acetylsalicylic acid irreversibly inhibits platelet aggregation. This effect on platelets is due to cyclooxygenase acetylation. This irreversibly inhibits synthesis of thromboxane A_2 (a platelet aggregation promoting and vasoconstricting prostaglandin) in the platelets. This effect is permanent and usually lasts for the entire 8-day life span of a platelet.

Paradoxically, acetylsalicylic acid also inhibits the synthesis of prostacyclin (a platelet aggregation inhibiting prostaglandin but with vasodilatory effects) in the endothelial cells of the blood vessels. This effect is temporary. As soon as the acetylsalicylic acid has been eliminated from the blood, the nucleated endothelial cells synthesize prostacyclin again. As a result, a single, low daily dose of acetylsalicylic acid (< 100 mg/day) results in inhibition of thromboxane A_2 in the platelets without considerably affecting prostacyclin synthesis.

Acetylsalicylic acid also belongs to the group of acid-forming non-steroidal anti-inflammatory agents with analgesic, antipyretic and anti-inflammatory properties. The mechanism for their action consists of the irreversible inhibition of the cyclooxygenase enzymes that are involved in prostaglandin synthesis. At higher doses, acetylsalicylic acid is used for treatment of mild to moderate pain, elevated body temperature, and for the treatment of acute and chronic inflammatory diseases such as rheumatoid arthritis.

Experimental data showed that ibuprofen may inhibit platelet aggregation of acetylsalicylic acid at lower dosages when concomitantly administered. In a study comparing the effect of the administration of a single dose of ibuprofen 400 mg 8 hours before or 30 minutes before administration of 81 mg of acetylsalicylic acid (in an immediate release tablet), it was observed a reduction of the effect of acetylsalicylic acid on the formation of thromboxane or platelet aggregation was observed. However these data is limited because there is uncertainty about the extrapolation of these data to clinical practice. Therefore there are no relevant conclusion about the regular use of ibuprofen and there are also no relevant clinical effect that may be considred associated with the occasional use of ibuprofen.

Atorvastatin

Atorvastatin is a selective, competitive inhibitor of HMG-CoA reductase, the rate-limiting enzyme responsible for the conversion of 3-hydroxy-3-methyl-glutaryl-coenzyme A to mevalonate, a precursor of sterols, including cholesterol.
Triglycerides and cholesterol in the liver are incorporated into very low-density lipoproteins (VLDL) and released into the plasma for delivery to peripheral tissues. Low-density lipoprotein (LDL) is formed from VLDL and is catabolized primarily through the receptor with high affinity to LDL (LDL receptor).

Atorvastatin lowers plasma cholesterol and lipoprotein serum concentrations by inhibiting HMG-CoA reductase and subsequently cholesterol biosynthesis in the liver and increases the number of hepatic LDL receptors on the cell surface for enhanced uptake and catabolism of LDL.

Atorvastatin reduces LDL production and the number of LDL particles. Atorvastatin produces a profound and sustained increase in LDL receptor activity coupled with a beneficial change in the quality of circulating LDL particles. Atorvastatin is effective in reducing LDL-C in patients with homozygous familial hypercholesterolaemia, a population that has not usually responded to lipid-lowering medicinal products.

Atorvastatin has been shown to reduce concentrations of total-C (30% - 46%), LDL-C (41% - 61%), apolipoprotein B (34% - 50%), and triglycerides (14% - 33%) while producing variable increases in HDL-C and apolipoprotein A1 in a dose response study. These results are consistent in patients with heterozygous familial hypercholesterolaemia, nonfamilial forms of hypercholesterolaemia, and mixed hyperlipidaemia, including patients with noninsulin-dependent diabetes mellitus.

Reductions in total-C, LDL-C, and apolipoprotein B have been proven to reduce risk for cardiovascular events and cardiovascular mortality.

Ramipril

Mechanism of action

Ramiprilat, the active metabolite of the prodrug ramipril, inhibits the enzyme dipeptidylcarboxypeptidase I (synonyms: angiotensin-converting enzyme; kininase II). In plasma and tissue this enzyme catalyses the conversion of angiotensin I to the active vasoconstrictor substance angiotensin II, as well as the breakdown of the active vasodilator bradykinin. Reduced angiotensin II formation and inhibition of bradykinin breakdown lead to vasodilatation.

Since angiotensin II also stimulates the release of aldosterone, ramiprilat causes a reduction in aldosterone secretion. The average response to ACE inhibitor monotherapy was lower in black (Afro-Caribbean) hypertensive patients (usually a low-renin hypertensive population) than in non-black patients.

Pharmacodynamic effects

Antihypertensive properties:

Administration of ramipril causes a marked reduction in peripheral arterial resistance. Generally, there are no major changes in renal plasma flow and glomerular filtration rate. Administration of ramipril to patients with hypertension leads to a reduction in supine and standing blood pressure without a compensatory rise in heart rate.

In most patients the onset of the antihypertensive effect of a single dose becomes apparent 1 to 2 hours after oral administration. The peak effect of a single dose is usually reached 3 to 6 hours after oral administration. The antihypertensive effect of a single dose usually lasts for 24 hours.

The maximum antihypertensive effect of continued treatment with ramipril is generally apparent after 3 to 4 weeks. It has been shown that the antihypertensive effect is sustained under long-term therapy lasting 2 years.

Abrupt discontinuation of ramipril does not produce a rapid and excessive rebound increase in blood pressure.

Heart failure:

In addition to conventional therapy with diuretics and optional cardiac glycosides, ramipril has been shown to be effective in patients with functional classes II-IV of the New-York Heart Association. The drug had beneficial effects on cardiac haemodynamics (decreased left and right ventricular filling pressures, reduced
total peripheral vascular resistance, increased cardiac output and improved cardiac index). It also reduced neuroendocrine activation.

Clinical efficacy and safety

Cardiovascular prevention/Nephroprotection:
A preventive placebo-controlled study (the HOPE-study), was carried out in which ramipril was added to standard therapy in more than 9,200 patients. Patients with increased risk of cardiovascular disease following either atherothrombotic cardiovascular disease (history of coronary heart disease, stroke or peripheral vascular disease) or diabetes mellitus with at least one additional risk factor (documented microalbuminuria, hypertension, elevated total cholesterol level, low high-density lipoprotein cholesterol level or cigarette smoking) were included in the study.

The study showed that ramipril statistically significantly decreases the incidence of myocardial infarction, death from cardiovascular causes and stroke, alone and combined (primary combined events).

Table 8: The HOPE study: Main results

<table>
<thead>
<tr>
<th></th>
<th>Ramipril</th>
<th>Placebo</th>
<th>relative risk (95% confidence interval)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>All patients</td>
<td>n=4,645</td>
<td>N=4,652</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary combined events</td>
<td>14.0</td>
<td>17.8</td>
<td>0.78 (0.70-0.86)</td>
<td><0.001</td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td>9.9</td>
<td>12.3</td>
<td>0.80 (0.70-0.90)</td>
<td><0.001</td>
</tr>
<tr>
<td>Death from cardiovascular events</td>
<td>6.1</td>
<td>8.1</td>
<td>0.74 (0.64-0.87)</td>
<td><0.001</td>
</tr>
<tr>
<td>Stroke</td>
<td>3.4</td>
<td>4.9</td>
<td>0.68 (0.56-0.84)</td>
<td><0.001</td>
</tr>
<tr>
<td>Secondary endpoints</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Death from any cause</td>
<td>10.4</td>
<td>12.2</td>
<td>0.84 (0.75-0.95)</td>
<td>0.005</td>
</tr>
<tr>
<td>Need for Revascularisation</td>
<td>16.0</td>
<td>18.3</td>
<td>0.85 (0.77-0.94)</td>
<td>0.002</td>
</tr>
<tr>
<td>Hospitalisation for unstable angina</td>
<td>12.1</td>
<td>12.3</td>
<td>0.98 (0.87-1.10)</td>
<td>NS</td>
</tr>
<tr>
<td>Hospitalisation for heart failure</td>
<td>3.2</td>
<td>3.5</td>
<td>0.88 (0.70-1.10)</td>
<td>0.25</td>
</tr>
<tr>
<td>Complications related to diabetes</td>
<td>6.4</td>
<td>7.6</td>
<td>0.84 (0.72-0.98)</td>
<td>0.03</td>
</tr>
</tbody>
</table>

The MICRO-HOPE study, a predefined substudy from HOPE, investigated the effect of the addition of ramipril 10 mg to the current medical regimen versus placebo in 3,577 patients at least ≥ 55 years old (with no upper limit of age), with a majority of type 2 diabetes (and at least another CV risk factor), normotensive or hypertensive.

The primary analysis showed that 117 (6.5 %) participants on ramipril and 149 (8.4 %) on placebo developed overt nephropathy, which corresponds to a RRR 24 %; 95 % CI [3-40], p = 0.027.

The REIN study, a multicenter randomized, double-blind parallel group, placebo-controlled study aimed at assessing the effect of treatment with ramipril on the rate of decline of glomerular function rate (GFR) in 352 normotensive or hypertensive patients (18-70 years old) suffering from mild (i.e. mean urinary protein excretion > 1 and < 3 g/24 h) or severe proteinuria (≥ 3 g/24 h) due to chronic non-diabetic nephropathy. Both subpopulations were prospectively stratified.

The main analysis of patients with the most severe proteinuria (stratum prematurely disrupted due to benefit in ramipril group) showed that the mean rate of GFR decline per month was lower with ramipril than with placebo; -0.54 (0.66) vs. -0.88 (1.03) ml/min/month, p = 0.038. The intergroup difference was thus 0.34 [0.03-0.65] per month, and around 4 ml/min/year; 23.1 % of the patients in the ramipril group reached the combined secondary endpoint of doubling of baseline serum creatinine concentration and/or end-stage renal disease (ESRD) (need for dialysis or renal transplantation) vs. 45.5 % in the placebo group (p = 0.02).

Secondary prevention after acute myocardial infarction:
The AIRE study included more than 2,000 patients with transient/persistent clinical signs of heart failure after documented myocardial infarction. The ramipril treatment was started 3 to 10 days after the acute myocardial infarction. The study showed that after an average follow-up time of 15 months the mortality in ramipril-treated patients was 16.9 % and in the placebo treated patients was 22.6 %. This means an absolute mortality reduction of 5.7 % and a relative risk reduction of 27 % (95 % CI [11-40 %]).

Dual blockade of the renin-angiotensin-aldosterone system (RAAS):

Two large randomised, controlled trials (ONTARGET (ONgoing Telmisartan Alone and in combination with Ramipril Global Endpoint Trial) and VA NEPHRON-D (The Veterans Affairs Nephropathy in Diabetes)) have examined the use of the combination of an ACE-inhibitor with an angiotensin II receptor blocker.

ONTARGET was a study conducted in patients with a history of cardiovascular or cerebrovascular disease, or type 2 diabetes mellitus accompanied by evidence of end-organ damage. VA NEPHRON-D was a study in patients with type 2 diabetes mellitus and diabetic nephropathy.

These studies have shown no significant beneficial effect on renal and/or cardiovascular outcomes and mortality, while an increased risk of hyperkalaemia, acute kidney injury and/or hypotension as compared to monotherapy was observed. Given their similar pharmacodynamic properties, these results are also relevant for other ACE-inhibitors and angiotensin II receptor blockers.

ACE-inhibitors and angiotensin II receptor blockers should therefore not be used concomitantly in patients with diabetic nephropathy.

ALTITUDE (Aliskiren Trial in Type 2 Diabetes Using Cardiovascular and Renal Disease Endpoints) was a study designed to test the benefit of adding aliskiren to a standard therapy of an ACE-inhibitor or an angiotensin II receptor blocker in patients with type 2 diabetes mellitus and chronic kidney disease, cardiovascular disease, or both. The study was terminated early because of an increased risk of adverse outcomes. Cardiovascular death and stroke were both numerically more frequent in the aliskiren group than in the placebo group and adverse events and serious adverse events of interest (hyperkalaemia, hypotension and renal dysfunction) were more frequently reported in the aliskiren group than in the placebo group.

5.2 Pharmacokinetic properties

Acetylsalicylic acid

Acetylsalicylic acid is metabolized into its main active metabolite, salicylic acid before, during and after absorption. The metabolites are predominantly eliminated by the kidneys. In addition to salicylic acid, the main metabolites of acetylsalicylic acid are the glycine conjugate of salicylic acid (salicyluric acid), the glucuronide ether and ester of salicylic acid (salicyl phenolic and salicyl acyl glucuronide), as well as gentisic acid formed by oxidation of salicylic acid, and its glycine conjugate.

The absorption of acetylsalicylic acid after oral administration is fast and complete, depending on the galenic formulation. Hydrolysis of the acetyl residue from acetylsalicylic acid in fact takes place to some extent during passage through the gastrointestinal mucosa. Maximal plasma levels are reached after 10 - 20 minutes (acetylsalicylic acid) or after 0.3 - 2 hours, respectively (total salicylate).

The elimination kinetics of salicylic acid largely depend on the dosage, since the capacity to metabolize salicylic acid is limited (elimination half-life fluctuates between 2 and 30 hours).

The elimination half-life of acetylsalicylic acid is only a few minutes; the elimination half-life of salicylic acid is 2 hours after administration of a 0.5 g dose of acetylsalicylic acid, 4 hours after administration of 1 g, and increases to 20 h after a single dose of 5 g.
Plasma protein binding in human subjects is concentration-dependent; values ranging from 49 % to more than 70 % (acetylsalicylic acid) and 66 % to 98 % (salicylic acid, respectively) have been reported. Salicylic acid is measurable in liquor and synovial fluid after administration of acetylsalicylic acid. Salicylic acid passes through the placenta and is transferred into breast milk.

Atorvastatin

Absorption:
Atorvastatin is rapidly absorbed after oral administration; maximum plasma concentrations (Cmax) occur within 1 to 2 hours. Extent of absorption increases in proportion to atorvastatin dose. After oral administration, atorvastatin film-coated tablets are 95% to 99% bioavailable compared to the oral solution. The absolute bioavailability of atorvastatin is approximately 12% and the systemic availability of HMG-CoA reductase inhibitory activity is approximately 30%. The low systemic availability is attributed to presystemic clearance in gastrointestinal mucosa and/or hepatic first-pass metabolism.

Distribution:
Mean volume of distribution of atorvastatin is approximately 381 l. Atorvastatin is ≥ 98% bound to plasma proteins.

Biotransformation:
Atorvastatin is metabolized by cytochrome P450 3A4 to ortho- and parahydroxylated derivatives and various beta-oxidation products. Apart from other pathways these products are further metabolized via glucuronidation. In vitro, inhibition of HMG-CoA reductase by ortho- and parahydroxylated metabolites is equivalent to that of atorvastatin. Approximately 70% of circulating inhibitory activity for HMG-CoA reductase is attributed to active metabolites.

Elimination:
Atorvastatin is eliminated primarily in bile following hepatic and/or extrahepatic metabolism. However, atorvastatin does not appear to undergo significant enterohepatic recirculation. Mean plasma elimination half-life of atorvastatin in humans is approximately 14 hours. The half-life of inhibitory activity for HMG-CoA reductase is approximately 20 to 30 hours due to the contribution of active metabolites.

Special populations:
Elderly: Plasma concentrations of atorvastatin and its active metabolites are higher in healthy elderly subjects than in young adults while the lipid effects were comparable to those seen in younger patient populations.

Paediatric: In an open-label, 8-week study, Tanner Stage 1 (N=15) and Tanner Stage ≥ 2 (N=24) paediatric patients (ages 6-17 years) with heterozygous familial hypercholesterolemia and baseline LDL-C ≥ 4 mmol/L were treated with 5 or 10 mg of chewable or 10 or 20 mg of film-coated atorvastatin tablets once daily, respectively. Body weight was the only significant covariate in atorvastatin population PK model. Apparent oral clearance of atorvastatin in paediatric subjects appeared similar to adults when scaled allometrically by body weight. Consistent decreases in LDL-C and TC were observed over the range of atorvastatin and o-hydroxyatorvastatin exposures.

Gender: Concentrations of atorvastatin and its active metabolites in women differ from those in men (Women: approx. 20% higher for Cmax and approx. 10% lower for AUC). These differences were of no clinical significance, resulting in no clinically significant differences in lipid effects among men and women.

Renal insufficiency: Renal disease has no influence on the plasma concentrations or lipid effects of atorvastatin and its active metabolites.

Hepatic insufficiency: Plasma concentrations of atorvastatin and its active metabolites are markedly increased (approx. 16-fold in Cmax and approx. 11-fold in AUC) in patients with chronic alcoholic liver disease (Child-Pugh B).
SLCO1B1 polymorphism: Hepatic uptake of all HMG-CoA reductase inhibitors including atorvastatin, involves the OATP1B1 transporter. In patients with SLCO1B1 polymorphism there is a risk of increased exposure of atorvastatin, which may lead to an increased risk of rhabdomyolysis (see section 4.4). Polymorphism in the gene encoding OATP1B1 (SLCO1B1 c.521CC) is associated with a 2.4-fold higher atorvastatin exposure (AUC) than in individuals without this genotype variant (c.521TT). A genetically impaired hepatic uptake of atorvastatin is also possible in these patients. Possible consequences for the efficacy are unknown.

Ramipril

Absorption:
Following oral administration ramipril is rapidly absorbed from the gastrointestinal tract: peak plasma concentrations of ramipril are reached within one hour. Based on urinary recovery, the extent of absorption is at least 56% and is not significantly influenced by the presence of food in the gastrointestinal tract. The bioavailability of the active metabolite ramiprilat after oral administration of 2.5 and 5 mg ramipril is 45%.

Peak plasma concentrations of ramiprilat, the sole active metabolite of ramipril are reached 2-4 hours after ramipril intake. Steady state plasma concentrations of ramiprilat after once daily dosing with the usual doses of ramipril are reached by about the fourth day of treatment.

Distribution:
The serum protein binding of ramipril is about 73% and that of ramiprilat about 56%.

Metabolism:
Ramipril is almost completely metabolised to ramiprilat, and to the diketopiperazine ester, the diketopiperazine acid, and the glucuronides of ramipril and ramiprilat.

Elimination:
Excretion of the metabolites is primarily renal.

Plasma concentrations of ramiprilat decline in a polyphasic manner. Because of its potent, saturable binding to ACE and slow dissociation from the enzyme, ramiprilat shows a prolonged terminal elimination phase at very low plasma concentrations.

After multiple once-daily doses of ramipril, the effective half-life of ramiprilat concentrations was 13-17 hours for the 5-10 mg doses and longer for the lower 1.25-2.5 mg doses. This difference is related to the saturable capacity of the enzyme to bind ramiprilat.

A single oral dose of ramipril produced an undetectable level of ramipril and its metabolite in breast milk. However the effect of multiple doses is not known.

Patients with renal impairment (see section 4.2): Renal excretion of ramiprilat is reduced in patients with impaired renal function, and renal ramiprilat clearance is proportionally related to creatinine clearance. This results in elevated plasma concentrations of ramiprilat, which decrease more slowly than in subjects with normal renal function.

Patients with hepatic impairment (see section 4.2): In patients with impaired liver function, the metabolism of ramipril to ramiprilat was delayed, due to diminished activity of hepatic esterases, and plasma ramipril levels in these patients were increased. Peak concentrations of ramiprilat in these patients, however, are not different from those seen in subjects with normal hepatic function.

5.3 Preclinical safety data

No nonclinical safety studies have been conducted with the active substances in combination.

Acetylsalicylic acid

The preclinical safety profile of acetylsalicylic acid is well documented. In animal studies, salicylates have not been shown to cause any organ damage except for kidney damage at high doses.

Acetylsalicylic acid has been extensively examined in vitro and in vivo for possible mutagenic effects. In their entirety, the results do not indicate any suspicion of any mutagenic effects. The same is true for studies investigating the possibility of any carcinogenic effects.

In animal studies, teratogenic effects of salicylates have been reported for several species. Impaired implantation, embryo- and fetotoxic effects and impaired learning ability in prenatally exposed offspring have been described.

Atorvastatin

Atorvastatin was negative for mutagenic and clastogenic potential in a battery of 4 in vitro tests and 1 in vivo assay. Atorvastatin was not found to be carcinogenic in rats, but high doses in mice (resulting in 6-11 fold the AUC0-24h reached in humans at the highest recommended dose) showed hepatocellular adenomas in males and hepatocellular carcinomas in females.

There is evidence from animal experimental studies that HMG-CoA reductase inhibitors may affect the development of embryos or fetuses. In rats, rabbits and dogs atorvastatin had no effect on fertility and was not teratogenic, however, at maternally toxic doses fetal toxicity was observed in rats and rabbits. The development of the rat offspring was delayed and post-natal survival reduced during exposure of the dams to high doses of atorvastatin. In rats, there is evidence of placental transfer. In rats, plasma concentrations of atorvastatin are similar to those in milk. It is not known whether atorvastatin or its metabolites are excreted in human milk.

Ramipril

Oral administration of ramipril has been found to be devoid of acute toxicity in rodents and dogs. Studies involving chronic oral administration have been conducted in rats, dogs and monkeys. Indications of plasma electrolyte shifts and changes in blood picture have been found in the 3 species.

As an expression of the pharmacodynamic activity of ramipril, pronounced enlargement of the juxtaglomerular apparatus has been noted in the dog and monkey from daily doses of 250 mg/kg/d. Rats, dogs and monkeys tolerated daily doses of 2, 2.5 and 8 mg/kg/d respectively without harmful effects. It was observed irreversible damage in kidney of young rats administered with a single dose of ramipril.

Reproduction toxicology studies in the rat, rabbit and monkey did not disclose any teratogenic properties. Fertility was not impaired either in male or in female rats. The administration of ramipril to female rats during the fetal period and lactation produced irreversible renal damage (dilatation of the renal pelvis) in the offspring at daily doses of 50 mg/kg body weight or higher.

Extensive mutagenicity testing using several test systems has yielded no indication that ramipril possesses mutagenic or genotoxic properties. Long-term carcinogenicity studies in mice and rats provided no evidence for a carcinogenic effect.

6. **PHARMACEUTICAL PARTICULARS**

6.1 **List of excipients**

<table>
<thead>
<tr>
<th>100 mg/20 mg/10 mg hard capsules</th>
<th>100 mg/20 mg/5 mg hard capsules</th>
<th>100 mg/20 mg/2.5 mg hard capsules</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Microcrystalline cellulose Talc</td>
<td>Core Microcrystalline cellulose Talc</td>
<td>Core Microcrystalline cellulose Talc</td>
</tr>
</tbody>
</table>
Sodium starch glycolate (type A)
Lactose monohydrate
Pregelatinised starch (maize)
Calcium carbonate
Hydroxypropylcellulose
Polysorbate 80
Crospovidone (type A)
Silica colloidal anhydrous
Magnesium stearate
Hypermellose
Sodium stearyl fumarate

Film-coating
Polyvinyl alcohol
Titanium dioxide (E171)
Talc
Lecithin (soya)
Xanthan gum
Hypermellose
Triethyl citrate
Povidone
Yellow iron oxide (E172)
Black iron oxide (E172)

Capsule shell:
Gelatin
Titanium dioxide
Red iron oxide (E172)
Shellac glaze
Ethanol (traces)
Iron oxide black
Propylene glycol (traces)
Ammonium hydroxide (traces)

Sodium starch glycolate (type A)
Lactose monohydrate
Pregelatinised starch (maize)
Calcium carbonate
Hydroxypropylcellulose
Polysorbate 80
Crospovidone (type A)
Silica colloidal anhydrous
Magnesium stearate
Hypermellose
Sodium stearyl fumarate

Film-coating
Polyvinyl alcohol
Titanium dioxide (E171)
Talc
Lecithin (soya)
Xanthan gum
Hypermellose
Triethyl citrate
Povidone
Yellow iron oxide (E172)
Black iron oxide (E172)

Capsule shell:
Gelatin
Titanium dioxide
Black iron oxide
Red iron oxide (E172)
Shellac glaze
Ethanol (traces)
Iron oxide black
Propylene glycol (traces)
Ammonium hydroxide (traces)

6.2 Incompatibilities

Not applicable.

6.3 Shelf life

36 months

6.4 Special precautions for storage

Store at or below 25°C

6.5 Nature and contents of container

Blister (OPA/Aluminium/PVC//Aluminium): 28 hard capsules in a box.
6.6 Special precautions for disposal and other handling

No special requirements.

7. MEDICINE SCHEDULE

Prescription Medicine

8. SPONSOR

Te Arai BioFarma Ltd
P.O Box 46205
Herne Bay, Auckland 1147
0800 TEARAI

9. DATE OF FIRST APPROVAL

20 April 2017

10. DATE OF REVISION OF THE TEXT

20 July 2017